
Unit – I

Objectives:

• To familiarize with the concepts of different number systems and codes.

Syllabus:

Number systems - binary numbers, octal, hexadecimal, other binary codes; complements, signed

binary numbers, digital logic operations and gates, basic theorems and properties of Boolean algebra,

Boolean functions, canonical and standard forms, complements of Boolean functions, two-level

NAND and NOR Implementation of Boolean functions.

Outcomes:

Students will be able to

• understand various number systems.

• perform the arithmetic operations using complementary methods.

• understand basic theorems and properties of Boolean algebra.

• understand basic logic operations and gates.

• perform the Two level NAND – NAND and NOR-NOR realizations of Boolean expressions.

Learning Material

Number Systems

Purposes:

1. To understand how does a digital computer work. Binary digital computers only work with 1’s

and 0’s, or high and low voltage, or true and false.

2. To convert among different number systems. We use decimal numbers everyday. Computers

understand only binary numbers, which are lengthy and inconvenient to human beings. Octal

and Hexadecimal numbers are introduced to make both happy: they are easier to be converted to

binary numbers and also easier for us to handle.

Classification:

Unsigned Numbers

Radices and Characters:

• Binary: 0, 1

• Decimal: 0, 1, 2, 3, 4, 5, 6, 7, 8, 9

• Octal: 0, 1, 2, 3, 4, 5, 6, 7

• Hexadecimal: 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, A, B, C, D, E, F

Structure of a number:

Note: If no fractional part, the radix point can be omitted!

dn-1 dn-2 … d2 d1 d0 . d_1 d_2 … d_m

Radix point

Fractional Part Integer Part

Radix-Complement

Numbers

Single-Precision

Double-Precision

Unsigned

Numbers Signed Integers

Signed-Magnitude
Diminished

Radix-Complement

Floating-Point

Numbers

Positional Notation or representation of numbers:

m

m

n

n

n

n rdrdrdrdrdrdrdN −

−

−

−

−

−

−

−

−

− ++++++++= 2

2

1

1

0

0

1

1

2

2

1

1 ,

where mnnird i −−−−−− ,2,1,0,1,2,2,1,1,2,1,0 , and r is the radix.

The number of numerical values the system uses is called the Base or Radix of the system

System

Radix

Allowable Digits

Binary

Octal

Decimal

Hexadecimal

2

8

10

16

0,1

0,1,2,3,4,5,6,7

0,1,2,3,4,5,6,7,8,9

0,1,2,3,4,5,6,7,8,9,A, B, C, D, E, F

Conversion of numbers from one radix to another radix

• Conversion from given base to Decimal:

write the number using the positional notation and then perform decimal arithmetic to

compute the result, which is the decimal number.

Example: Given the positional notations of the following numbers: (1101.1)2, (724)8, and (BCD)16.

• (4021.2)5 = 4 x 53 + 0 x 52 + 2 x 51 + 1 x 50 + 2 x 5-1 = (511.4)10

4 x 125 + 0 + 10 + 1 + 2 x (1/5)

500 + 11 + .4

• (B65F)16 = 11 x 163 + 6 x 162 + 5 x 161 + 15 x 160 = (46687)10

11 x 4096 + 6 x 256 + 5 x 16 + 15

45056 + 1536 + 80 + 15

• (1010.011) 2 = 23 + 21 + 2-2 + 2-3 = (10.375) 10

• (630.4) 8 = 6 x 82 + 3 x 81 + 0 x 80 + 4 x 8-1 = (408.5) 10

• Conversion from Decimal to given base:

Integer part: Divide the decimal number by the base to which we want to convert and cast

out the reminders.

Fractional part: Multiply the decimal number by the base to which we want to convert and

cast out the integer part.

Rationale: based on the positional notation.

The conversion of decimal numbers with both integers and fraction parts is done by

converting the integer and fraction separately and then combining the two answers.

Example: Convert (210)10 to binary and to hexadecimal (Radix 16).

- (210)10 = 1 x 27 + 1 x 26 + 0 x 25 + 1 x 24 + 0 x 23 + 0 x 22

+ 1 x 21 + 0 x 20

= 128 + 64 + 0 + 16 + 0 + 0 + 1 + 0

= (11010010)2

- (210)10 = 13 x 161 + 2 x 160

= 208 + 2 = 210 = (D2)16

• Conversion from Decimal 41 to Binary:

 Integer quotient Remainder Coefficient

41/2 = 20 + ½ a0 = 1

20/2 = 10 + 0 a1 = 0

10/2 = 5 + 0 a2 = 0

 5/2 = 2 + ½ a3 = 1

 2/2 = 1 + 0 a4 = 0

 1/2 = 0 + ½ a5 = 1

• The conversion from decimal integers to any base-r system is similar to the example, except that

division is done by r instead of 2.

• Conversion from Decimal 153 to Octal:

153

 19 1

 2 3

 0 2 = (231) 8

• Conversion from Decimal fraction (0.6875) 10 to Binary:

Integer Fraction Coefficient

0.6875 x 2 = 1 + 0.3750 a-1 = 1

0.3750 x 2 = 0 + 0.7500 a-2 = 0

0.7500 x 2 = 1 + 0.5000 a-3 = 1

0.5000 x 2 = 1 + 0.0000 a-4 = 1

• The conversion from decimal fraction to any base-r system is similar to the example.

Multiplication is by r instead of 2, and the coefficients found from the integers may range in

value from 0 to r-1 instead of 0 and 1.

• Conversion from Decimal fraction (0.513) 10 to Octal:

0.513 x 8 = 4.104

0.104 x 8 = 0.832

0.832 x 8 = 6.656

0.656 x 8 = 5.248

0.248 x 8 = 1.984

0.984 x 8 = 7.872

 (0.513) 10 = (0.406517…) 8

Binary to/from Octal and Hexadecimal: Starting at the binary point, cast off three (four) bits at a

time and convert each group to its octal (hexadecimal) equivalent. Padding 0’s to the left for the

integer part and to the right for the fractional part when necessary.

The conversion from and to binary, octal and hexadecimal plays an important part in digital

computers. Since 23 = 8 and 24 = 16, each octal digit corresponds to three binary digits and each

hexadecimal digit corresponds to four binary digits.

• Conversion from binary to Octal:

(10 110 001 101 011. 111 100 000 110) 2 = (26153.7406) 8

• Conversion from binary to Hexadecimal:

(10 1100 0110 1011. 1111 0000 0110) 2 = (2C6B.F06) 16

• Conversion from Octal to binary:

(673.124) 8 = (110 111 011. 001 010 100) 2

• Conversion from Hexadecimal to binary:

(306.D) 16 = (0011 0000 0110. 1101) 2

• Conversion from Hexadecimal to Decimal:

(37B) 16

3 x 162 + 7 x 161 + 11 x 160

= 3 x 256 + 7 x 16 + 11 x 1

= 768 + 112 +11

= (891) 10

r-1’s complement and r’s complement of unsigned numbers subtraction:

9’s & 10’s Complements for decimal numbers:

• The Subtraction of decimal numbers can be accomplished by the 9‘s & 10‘s compliment

methods similar to the 1‘s & 2‘s compliment methods of binary numbers.

• The 9‘s compliment (diminished radix complement) of a decimal number is obtained by

subtracting each digit of that decimal number from 9.

• The 10‘s compliment (radix complement) of a decimal number is obtained by adding a 1 to

its 9‘s compliment.

Example:

9‘s compliment of 3465 and 782.54 is

 9999 999.99

-3465 -782.54
---------- -----------

6534 217.45
------------------ --------------------

10‘s complement of 4069 is
9999 -

4069

5930

+1

5931

9’s compliment method of subtraction:

To perform this, obtain the 9‘s compliment of the subtrahend and to it, add the minuend, now

call this number as intermediate result. If there is a carry to the LSD of this result to get the answer

called end around carry. If there is no carry, it indicates that the answer is negative & the

intermediate result is its 9‘s compliment.

Example: Subtract using 9‘s complement

(1) 745.81- 436.62 (2) 436.62 - 745.82

 745.81 (normal subtraction) 436.62
-436.62 -745.81

---------- ----------
309.19 -309.19

----------- ---------
 745.81 436.62

+563.37 9‘s compliment of 436.62 +254.18

---------- ------------

1309.18 (end around carry) 690.80 (no carry)

 +1 ------------

----------- 9‘s complement of 690.80

+309.19 = - 309.19

• If there is no carry indicating that answer is negative. so take 9‘s complement of

intermediate result & put minus sign (-) then the result should be -309.19.

• If there is a carry indicates that the answer is positive +309.19. Then there is no need of

taking 9‘s complement.

10’s compliment method of subtraction:

• To perform this, obtain the 10‘s compliment of the subtrahend & add it to the minuend. If there

is a carry ignore it.

• The presence of the carry indicates that the answer is positive, the result is the answer.

• If there is no carry, it indicates that the answer is negative & the result is its 10‘s compliment.

• Obtain the 10‘s compliment of the result & place negative sign infront to get the answer.

Example:

 (a) 2928.54 - 416.73 (b) 416.73 - 2928.54

 2928.54 (normal subtraction) 0416.73
-0416.73 -2928.54

---------- ----------
2511.81 -2511.81

----------- ---------
2928.54 0416.73

 +9583.27 10‘s compliment of 416.73 +7071.46
---------- ------------

12511.81 ignore the carry 7488.19

 (10’s complement)

 +2511.81 ---------

 -2511.81

1‘s & 2’s compliment form for binary numbers:

• The 1‘s complement of a binary number is defined as the value obtained by inverting all the bits

in the binary representation of the number (swapping 0s for 1s and vice versa).

Example:

For X = 1010, the 1's complement is given by 0101.

• The 2's complement of a binary number X is obtained by following three methods

1. The expression 2n – X, where n is the number of bits of X.

2. All the bits are inverted (1’s complement) and a 1 is added in the least significant place.

3. The lowest order 1 in X is sensed, and all succeeding higher digits are inverted.

Example:

For X = 1010, the 2's complement is given by:

1. 24 – 1010 = 10000 – 1010 = 0110.

2. 1’s complement of 1010 is 0101 and 0101 + 1 = 0110.

3. The low order 1 in 1010 is at 1st bit position and after that the higher digits are

 inverted and the result is 1010.

Signed binary numbers:

Two ways of representation of signed numbers

1. Sign Magnitude form
2. Complemented form

Sign Magnitude form:

• In sign magnitude form, an additional bit called the sign bit is placed in front of the number.

• If the sign bit is 0, the number is positive, and if it is a 1, then the number is negative.

Example:

 0 1 0 1 0 0 1

 ↓

Sign bit = + 41 magnitude

 ↑

 1 1 0 1 0 0 1

 = - 41 magnitude

Representation of signed numbers using 2’s or 1’s complement method:

• If the number is positive, the magnitude is represented in its true binary form & a sign bit 0
is placed in front of the MSB.

• If the no is negative, the magnitude is represented in its 2‘s or 1‘s compliment form & a
sign bit 1 is placed in front of the MSB.

Example:

Sign bit magnitude

 ↓

 In any form

 0 1 1 0 0 1 1

 = +51

In sign magnitude form

1 1 1 0 0 1 1

 = -51

In sign 2‘s compliment form

1 0 0 1 1 0 1

 = -51

In sign 1‘s compliment form

1 0 0 1 1 0 0

= -51

Given no. Sign magnitude form 2‘s complement form 1‘s complement form

01101 +13 +13 +13

010111 +23 +23 +23

10111 -7 -9 -8

1101010 -42 -22 -21

Special case in 2’s complement representation:

Whenever a signed no. has a 1 in the sign bit & all 0‘s for the magnitude bits, the

decimal equivalent is -2
n
, where n is the no of bits in the magnitude.

Example:

 1000 = -8 & 10000 = -16

2’s compliment Arithmetic:

• The 2‘s complement system is used to represent positive numbers using modulus
arithmetic.

• The word length of a computer is fixed. i.e., if a 4-bit number is added to another 4-bit
number, the result will be only of 4 bits.

• Carry if any, from the fourth bit will overflow called the Modulus arithmetic.
Example: 1100+1111=1011

• In the 2‘s complement subtraction, add the 2‘s complement of the subtrahend to the

minuend.

• If there is a carry out, ignore it and look at the sign bit i.e., MSB of the sum term.

• If the MSB is a 0, the result is positive and it is in true binary form.

• If the MSB is a 1 (carry in or no carry at all) the result is negative and is in its 2‘s

complement form. Take its 2‘s complement to find its magnitude in binary.

Example:

Subtract 14 from 46 using 8-bit 2‘s complement arithmetic:

+14 = 00001110

-14 = 11110010 2‘s complement of 14

+46 = 00101110

-14 = +11110010 2‘s complement form of 14
___ ____________

-32 (1)00100000 ignore carry

Ignore carry and the MSB is 0. So, the result is positive and is in normal binary

form. So the result is +00100000 = +32.

Example: Add -75 to +26 using 8-bit 2‘s complement arithmetic

+75 = 01001011
-75 = 10110101 2‘s complement of 75

+26 = 00011010
-75 = +10110101

___ ____________
-49 11001111 No carry

 No carry and MSB is 1. So the result is negative and is in 2‘s complement form.

 The magnitude is 2‘s complement of 11001111. i.e., 00110001 = 49. So result is -49

1’s compliment arithmetic:
• In 1‘s complement subtraction, add the 1‘s complement of the subtrahend to the minuend.

• If there is a carryout, bring the carry around & add it to the LSB called the end around
carry.

• Look at the sign bit (MSB). If this is a 0, the result is positive and a true binary number.

• If the MSB is a 1 (carry or no carry), the result is negative and in complement form. Take its
1‘s complement to get the magnitude in binary.

Example: Using 8-bit 1‘s complement

 Subtract 14 from 25 ADD -25 to +14

 25 = 00011001 +14 = 00001110

 -14 = 11110001 -25 = +11100110
 __ __________ ___ ___________

 +11 (1)00001010 -11 11110100

 +1

 ____________ No carry and MSB = 1

 00001011 Result is negative and in 1’s complement form
 MSB is a 0 so result is positive (true binary)

Compliment Arithmetic Advantage:

Subtraction is also performed by addition. Instead of subtracting one number from other the

compliment of the subtrahend is added to minuend.

Codes

The digital data is represented, stored and transmitted as group of binary bits. This group is also

called as binary code. The binary code is represented by the number as well as alphanumeric

letter.

Advantages of Binary Code

Following is the list of advantages that binary code offers.

• Binary codes are suitable for the computer applications.

• Binary codes are suitable for the digital communications.

• Binary codes make the analysis and designing of digital circuits if we use the binary

codes.

• Since only 0 & 1 are being used, implementation becomes easy.

Classification of codes

The codes are broadly categorized into following four categories.

• Weighted Codes

• Non-Weighted Codes

• Binary Coded Decimal Code

• Alphanumeric Codes

• Error Detecting Codes

• Error Correcting Codes

Weighted Codes

Weighted binary codes are those binary codes which obey the positional weight principle. Each

position of the number represents a specific weight. Several systems of the codes are used to

express the decimal digits 0 through 9. In these codes each decimal digit is represented by a

group of four bits.

Non-Weighted Codes

In this type of binary codes, the positional weights are not assigned. The examples of non-

weighted codes are Excess-3 code and Gray code.

Excess-3 code

The Excess-3 code is also called as XS-3 code. It is non-weighted code used to express decimal

numbers. The Excess-3 code words are derived from the 8421 BCD code words adding (0011)2

or (3)10 to each code word in 8421. The excess-3 codes are obtained as follows −

Example:

Gray Code

• It is the non-weighted code and it is not arithmetic codes. That means there are no

specific weights assigned to the bit position.

• It has a very special feature that, only one bit will change each time the decimal number

is incremented as shown in fig. As only one bit changes at a time, the gray code is called

as a unit distance code. The gray code is a cyclic code. Gray code cannot be used for

arithmetic operation.

Application of Gray code

• Gray code is popularly used in the shaft position encoders.

• A shaft position encoder produces a code word which represents the angular position

of the shaft.

Binary Coded Decimal (BCD) code

In this code each decimal digit is represented by a 4-bit binary number. BCD is a way to express

each of the decimal digits with a binary code. In the BCD, with four bits we can represent

sixteen numbers (0000 to 1111). But in BCD code only first ten of these are used (0000 to

1001). The remaining six code combinations i.e. 1010 to 1111 are invalid in BCD.

Advantages of BCD Codes

• It is very similar to decimal system.

• We need to remember binary equivalent of decimal numbers 0 to 9 only.

Disadvantages of BCD Codes

• The addition and subtraction of BCD have different rules.

• The BCD arithmetic is little more complicated.

• BCD needs more number of bits than binary to represent the decimal number. So BCD is

less efficient than binary.

Alphanumeric codes

A binary digit or bit can represent only two symbols as it has only two states '0' or '1'. But this is

not enough for communication between two computers because there we need many more

symbols for communication. These symbols are required to represent 26 alphabets with capital

and small letters, numbers from 0 to 9, punctuation marks and other symbols.

The alphanumeric codes are the codes that represent numbers and alphabetic characters. Mostly

such codes also represent other characters such as symbol and various instructions necessary for

conveying information. An alphanumeric code should at least represent 10 digits and 26 letters

of alphabet i.e. total 36 items. The following three alphanumeric codes are very commonly used

for the data representation.

• American Standard Code for Information Interchange (ASCII).

• Extended Binary Coded Decimal Interchange Code (EBCDIC).

• Five bit BCD Code.

ASCII code: ASCII code is a 7-bit code whereas EBCDIC is an 8-bit code. ASCII code is more

commonly used worldwide while EBCDIC is used primarily in large IBM computers.

Sequential Code: These are those codes in which each succeeding code is 1 binary number

greater than the preceding code. This property is used for mathematical manipulation of data. For

ex:- BCD And Excess-3 Code.

Self-complementary Code: A code is said to be self-complementary if the code for 9’s

complement of N i.e. 9-N can be obtained by interchanging all 0s and 1s.

➢ Decimal 9 is the complement of code for 0, 8 for 1, 7 for 2 and so on.

➢ For a code to be self complementing, the sum of all its weights must be 9. Digit. 8421

and 5421 codes are not self complementing codes whereas 5211, 2421, 3321, 4321 are

self complementing.

➢ In general, a code is self-complementary if we produce a code by taking the first

complement of the digit which is same as 9’s complement of the number.

Cyclic codes:

• Cyclic codes are those in which each successive code word differs from the preceding

one in only one bit position.

• They are also called unit distance codes

• Example: gray code Reflective Code: Example : Gray code

Binary–Gray Code Conversion A given binary number can be converted into its Gray code

equivalent by going through the following steps:

• Begin with the most significant bit (MSB) of the binary number. The MSB of the Gray

code equivalent is the same as the MSB of the given binary number.

• The second most significant bit, adjacent to the MSB, in the Gray code number is

obtained by adding the MSB and the second MSB of the binary number and ignoring the

carry, if any. That is, if the MSB and the bit adjacent to it are both ‘1’, then the

corresponding Gray code bit would be a ‘0’.

• The third most significant bit, adjacent to the second MSB, in the Gray code number is

obtained by adding the second MSB and the third MSB in the binary number and

ignoring the carry, if any.

• The process continues until we obtain the LSB of the Gray code number by the addition

of the LSB and the next higher adjacent bit of the binary number.

The conversion process is further illustrated with the help of an example showing step-by-step

conversion of binary code 1011 into its Gray code equivalent:

Gray code 1- - - Binary 1011

Gray code 11- - Binary 1011

Gray code 111- Binary 1011

Gray code 1110

Basic logic operations NOT, OR, AND:
Binary logic consists of binary variables and logic operations. Each binary variable consists of
two states called logic ‘0’ and logic ‘1’. There are 3 basic logical operations:
AND,OR,NOTand derived operations are NAND, NOR,X-OR, X-NOR.

AXIOMS:
Axioms or Postulates are a set of logical expressions without proof. Each axiom can be

interpreted as the outcome of an operation performed by a logic gate.

AND(A.B=C) OR(A+B=C) NOT(A’=B)

0.0=0 0+0=0 1’= 0

0.1=0 0+1=1 0’ = 1

1.0=0 1+0=1

1.1=1 1+1=1

LOGIC GATES:

Logic gates are fundamental building blocks of digital systems. Logic gateproduces one

output level when some combinations of input levels are present and a different output level

when other combination of input levels is present. Based on the axioms there 3 basic types of

logic gates were available which are indicated by AND, OR, NOT.

The interconnection of gates to perform a variety of logical operation is called

LogicDesign. Inputs & outputs of logic gates can occur only in two levels i.e., 1,0 or High, Low

or True ,False or On , Off.

A table which lists all the possible combinations of input variables & the corresponding

outputs is called a Truth Table. It shows how the logic circuits output responds to various

combinations of logic levels at the inputs.

Level Logic, a logic in which the voltage levels represent logic 1 & logic 0.Level logic

may be Positive Logic or Negative Logic.

 In PositiveLogic the higher of two voltage levels represent logic 1 & Lower of two

voltage levels representlogic 0.In Negative Logic the lower of two voltage levels represent logic

1 & higher of two voltage levels represent logic 0.

Ex:

In TTL (Transistor-Transistor Logic) Logic family voltage levels are +5V and 0V.Logic 1
represent +5Vand Logic 0 represent 0V.

AND Gate:

It is represented by “.”(dot) It has two or more inputs but only one output. The output

assume the logic 1 state only when each one of its inputs is at logic 1 state. The output assumes

the logic 0 state even if one of its inputs is at logic 0 state. The AND gate is also called an All or

Nothing gate.

Boolean Expression: A AND B, Y=A.B

 Logic Symbol Truth Table

OR Gate:

It is represented by “+”(plus). It has two or more inputs but only one output. The output assumes

the logic 1 state only when one of its inputs is at logic 1 state. The output assumes the logic 0

state even if each one of its inputs is at logic 0 state. The OR gate is also called an any or All

gate. Also called an inclusive OR gate because it includes the condition both the inputs can be

present.

Logic Symbol Truth Table

Boolean Expression:A OR B, A+B=Y

NOT Gate:
It is represented by “-“(bar).It is also called an Inverter or Buffer. It has only one

input and one output. Whose output always the compliment of its input. Theoutput assumes
logic 1 when input is logic 0 & output assume logic 0 when input is logic 1.

Logic Symbol

Truth table:

 A X
 1 0
 0 1

• Logic circuits of any complexity can be realized using only AND, OR , NOT gates.
Using these 3 called AND-OR-INVERT i.e, AOI Logic circuits.

The Universal Gates:

The universal gates are NAND, NOR. These gates are called universal gates because any

Boolean logic function including basic operations(AND, OR, INVERT) can be implemented

using NAND and NOR gates. More over AOI logic can be easily converted to NAND logic or

NOR logic.

NAND Gate:It is combination of AND gate followed by NOT gate

Boolean Expression: 𝑌 = (𝐴. 𝐵)̅̅ ̅̅ ̅̅ ̅̅

NAND assumes Logic 0 when each of inputs assumes logic 1.

Logic Symbol

Truth table

Bubbled OR gate: The output of this is same as NAND gate.

Bubbled OR gate is OR gate with inverted inputs.

𝑌 = �̅� + �̅� = (𝐴𝐵)
NAND gate as an Inverter:

All its input terminals together & applying the signal to be inverted to the common

terminal by connecting all input terminals except one to logic 1 & applying the signal to be

inverted to the remaining terminal. It is also called Controlled Inverter.

Bubbled NAND Gate: The output of bubbled NAND gate is same as OR gate

NOR Gate:

NOR gate is NOT gate with OR gate. i.e, OR gate is NOTed.

Boolean expression:𝑌 = (𝐴 + 𝐵)̅̅ ̅̅ ̅̅ ̅̅ ̅̅

Logic SymbolLogic symbol with OR and NOT

 Truth Table:

A B Y

0 0 1

0 1 0

1 0 0

1 1 0

Bubbled AND gate:

It is AND gate with inverted inputs. The AND gate with inverted inputs is called a bubbled

AND gate. So a NOR gate is equivalent to a bubbled and gate. A bubbled AND gate is also

called a negative AND gate. Since its output assumes the HIGH state only when all its inputs are

in LOW state, a NOR gate is also called active-LOW AND gate.

Output Y is 1 only when both A & B are equal to 0.i.e, only when both A‘ and B‘ are equal

to 1.NOR can also realized by first inverting the inputs and performing AND operation those

inverted inputs.

Logic Symbol

Truth table:

Inputs Inverted Output

A B Inputs Y

 A‘ B‘

0 0 1 1 1

0 1 1 0 0

1 0 0 1 0

1 1 0 0 0

NOR gate as an inverter:

is tying all input terminals together & applying the signal to be inverted to the common

terminals or all inputs set as logic 0 except one & applying signal to be inverted to the remaining

terminal.

Neither bubbled NOR Gate: is AND gate.

The Exclusive OR (X-OR) gate:

It has 2 inputs& only 1 output. It assumes output as 1 when input is not equal called anti-
coincidence gate or inequality detector.

 Logic Symbol

 Truth table:

The high outputs are generated only when odd number of high inputs is present. This is why x-or
function also known as odd function.

A B Y

0 0 0

0 1 1

1 0 1

1 1 0

The X-OR gate using AND-OR-NOT gates:

X-OR gate as an Inverter:
By connecting one of two input terminals to logic 1 & feeding the sequence to be

inverted to other terminal

Logic Symbol

X-OR gate using NAND gates only:

X-OR gate using NOR gates only:

The EX-NOR Gate:
It is X-OR gate with a NOT gate.It has two inputs & one output logic circuit. It assumes output
as 0 when one if inputs are 0 and other 1.It can be used as an equality detector because it outputs
a 1 only when its inputs are equal.

Proof: A ʘ B = (AB)’

 = (AB’+A’B)’

 = (A’+B).(A+B’)

 = AA’+A’B’+AB+BB’

 = AB+A’B’

Boolean theorems:

Boolean algebra:

Switching circuits called Logic circuits, gate circuits & digital circuits. Switching
algebra called Boolean Algebra. Boolean algebra is a system of mathematical logic. It is an
algebraic system consisting of the set of element (0,1) two binary operators called OR & AND
& One unary operator NOT.

A+A=A , A.A=A because variable has only a logic value.

Complementation Laws:

Complement means invert(0’ as 1 & 1’ as 0)
Law1:0’=1
Law2:1’=0

Law3:If A=0 then A’ =1
 Law4:If A=1 then A’ =0
 Law5: (A’)’ =A(double complementation law)

AND laws:

Law 1: A.0=0(Null law)
Law 2:A.1=A(Identity law)

Law 3:A.A=A
Law 4:A.A’ =0

OR laws:

Law 1: A+0=A(Null law)
Law 2:A+1=1

Law 3:A+A=A
Law 4:A+ =0

 Truth table:

 Inputs Output

 A B X= A B

 0 0 1

 0 1 0

 1 0 0

Logic Symbol. 1 0 1

Commutative laws: allow change in position of AND or OR variables.2 commutative laws

Law 1: A+B=B+A
Law 2: A.B=B.A

A B A+B = B A B+A

 A.B B.A

0 0 0

0 0 0

 0 0

0 1 1

0 1 1

 0 0

1 0 1

1 0 1

 0 0

1 1 1

1 1 1

 1 1

Associative laws: This allows grouping of variables. It has 2 laws.

Law 1: (A+B)+C=A+(B+C) =A OR B ORed with C

This law can be extended to any no. of variables

(A+B+C)+D=(A+B+C)+D=(A+B)+(C+D)

Law

2:

(A.

B).C

=A(

B.C)

T
h

is law can be extended to any no. of variables
(A.B.C).D=(A.B.C).D

A B C A+B (A+B)+C A B C B+C A+(B+C)

0 0 0 0 0

 0 0 0 0 0

0 0 1 0 1

 0 0 1 1 1

0 1 0 1 1

 0 1 0 1 1

0 1 1 1 1

 0 1 1 1 1

1 0 0 1 1

= 1 0 0 0 1

1 0 1 1 1

1 0 1 1 1

1 1 0 1 1

 1 1 0 1 1

1 1 1 1 1

 1 1 1 1 1

A B C BC A(BC)

A B C AB (AB)C

0 0 0 0 0

0 0 0 0 0

= 0 0 1 0 0

0 0 1 0 0

0 1 0 0 0

0 1 0 0 0

0 1 1 1 0

0 1 1 0 0

1 0 0 0 0

1 0 0 0 0

1 0 1 0 0

1 0 1 0 0

1 1 0 0 0

1 1 0 1 0

1 1 1 1 1

1 1 1 1 1

Distributive Laws:
This has 2 laws
Law 1.A(B+C)=AB+AC

This law applies to single variables.
Ex:ABC(D+E)=ABCD+ABCE

AB(CD+EF)=ABCD+ABEF

Law 2.A+BC=(A+B)(A+C) RHF=(A+B)(A+C)

=AA+AC+BA+BC

=A+AC+AB+BC
=A(1+C+B)+BC

=A.1+BC
=A+BC LHF

A B C BC A+BC

0 0 0 0 0

0 0 1 0 0

0 1 0 0 0

0 1 1 1 1

1 0 0 0 1

1 0 1 0 1

1 1 0 0 1

1 1 1 1 1

A B C B+C A(B+C)

0 0 0 0 0

0 0 1 1 0

0 1 0 1 0

0 1 1 1 0

1 0 0 0 0

1 0 1 1 1

1 1 0 1 1

1 1 1 1 1

 A B C AB AC AB+AC

 0 0 0 0 0 0

 0 0 1 0 0 0

=

0 1 0 0 0 0

0 1 1 0 0 0

 1 0 0 0 0 0

 1 0 1 0 1 1

 1 1 0 1 0 1

 1 1 1 1 1 1

Redundant Literal Rule(RLR):

Law 1: A+ A’B=A+B

LHF =
(A+A’)(A
+B)

=1.(A+B)

=A+BRHF

Performing OR operation of a variable with the AND of the compliment of that variable with

another variable, is equal to the Performing OR operation of the two variables.

Law 2: A (A’+B) = AB

 LHF = A.A’ + AB

 = 0+AB

 =AB RHF
Performing AND operation of a variable with the OR of the complement of that variable

with another variable, is equal to the performing AND operation of the two variables.

A B C A+B A+C (A+B)(A+C)

0 0 0 0 0 0

=
0 1 1 1 0

0

0 1 0 1 0 0

0 1 1 1 1 0

1 0 0 0 1 0

1 0 1 1 1 1

1 1 0 1 1 1

1 1 1 1 1 1

A B A+B

 A B B A+ B

0 0 0

 0 0 0 0

0 1 1

 0 1 1 1 =

1 1 1

 1 0 0 1

1 1 1

 1 1 0 1

A B A+B

 A B A’+B A(A’+B)

0 0 0

 0 0 1 0

0 1 0

 0 1 1 0

1 1 0

 1 0 0 0 =

1 1 1

 1 1 1 1

Idempotent Laws:

 Idempotent means same value. It has 2 laws.

 Law 1=A.A=A

This law statesperforming AND operation of a variable with itself is equal to that variable
only

If A=0, then A.A=0.0=0=A
If A=1, then A.A=1.1=1=A

Law 2: A+A=A

This law states that performing OR operation of a variable with itself is equal to thatvariable

only.

If A=0, then A+A=0+0=0=A
If A=1, then A+A=1+1=1=A

Absorption Laws:

Law 1=A+A.B=A

A B A.B A+(A.B)

= A(1+B)
0 0 0 0

0 1 0 0

=A.1

1 0 0 1

=A

1 1 1 1

i.e., A+A. any term=A

Transposition Theorem:

Law 2=A(A+B)=A

A(A+B)=A.A+A.B

A B + A(A+B)

= A+AB

0 0 0 0

=A(1+B)

= A.1 =A 0 1 1 0

 1 0 1 1

 1 1 1 1

AB+ A‘C=
(A+C)(A‘+B)
RHS = (A+C)(A‘ +B)

=AA‘ +CA‘ +AB+CB

=0+ A‘C+AB+BC

 =A‘C+AB+BC(A+A‘)

=AB+ABC+ C+ BC =AB+ CLHS

DeMorgan’s Theorem:
It represents two of the most powerful laws in Boolean algebra

Law 1: (A+B)‘ = A‘.B‘

This law states that the compliment of a sum of variables is equal to the product
of their individual complements.

LHS

RHS

NOR gate= Bubbled AND gate

This can be extended to any variables. (A+B+C+D+-----) ‘=A‘B‘C‘D‘----

Law 2: (AB)‘=A‘+B‘

Complement of the product of variables is equal to the sum of their individual components.

Duality:

In a positive Logic system the more positive of the two voltage levels is represented by a

1 & the more negative by a 0. In a negative logic system the more positive of the two voltage

levels is represented by a 0 & more negative by a 1. This distinction between positive &negative

logic systems is important because an OR gate in the positive logic system becomes an AND

gate in the negative logic system &vice versa. Positive & Negative logics give a basic duality in

Boolean identities. Procedure dual identity by changing all + (OR) to. (AND) & complementing

all 0‘s &1‘s. Once a theorem or statement is proved, the dual also thus stands proved called

Principle of duality.

Relations between complement

(A+B+C+….) ‘= A’. B’.C’ ….

(A.B.C.….) ‘= A’ + B’ + C’ + ….

Duals:

 Expression Dual

 0=1 1=0

 0.1=0 1+0=1

 0.0=0 1+1=1

 1.1=1 0+0=0

 A.0=0 A+1=1

 A.1=A A+0=A

 A.A=A A+A=A

 A.A’ =0 A+A’ =1

 A.B=B.A A+B=B+A

 A.(B.C)=(A.B).C A+(B+C)=(A+B)+C

 A.(B+C)=(AB+AC) A+BC=(A+B)(A+C)

 A(A+B)=A A+AB=A

 A.(A.B)=A.B A+A+B=A+B

 (A+B)(A’+C)(B+C)=(A+B)(A’+C)

AB+ A'C+BC=AB+

A'C

Standard SOP and POS forms

Reducing Boolean Expressions:

Procedure:

1. Multiply all variables necessary to remove parenthesis

2. Look for identical terms. Only one of those terms to be retained & other
dropped.

Ex: AB+AB+AB+AB=AB

3. Look for a variable & its negation in the same term. This term can be dropped 1

Ex: AB +AB = AB (+1)=AB .1=AB

4.Look for pairs of terms which have the same variables, with one or more variables

complemented. If a variable in one term of such a pair is complemented while in the second term

it is not then such terms can be combined into a single term with variable dropped.

Ex: AB +AB D= AB (+D)=AB .1=AB

Boolean functions & their representation:

A function of n Boolean variables denoted by f(x1,x2,x3------xn) is another variable

denoted by & takes one of the two possible values 0 & 1.

The various ways of representingthe given function is

1. Sum of Product(SOP) form:It is called the Disjunctive NormalForm(DNF)

 Ex: f(A,B,C)= A.B’+ C’

2. Product of Sums (POS) form:It is called the Conjunctive Normal Form(CNF).This is

implemented using Consensus theorem.

Ex:f(A,B,C)=(A+B)(B+C)

3. Truth Table form:The function is specified by listing all possible combinations of values

assumed by the variables & the corresponding values of the function.

Ex: Truth table for f(A,B,C) = (B+ C)
Decimal Code A B C F(A,B,C)

0 0 0 0 0

1 0 0 1 1

2 0 1 0 1

3 0 1 1 1

4 1 0 0 0

5 1 0 1 1

6 1 1 0 0

7 1 1 1 0

4. Standard Sum of Products form called Disjunctive Canonical form (DCF) & also called
Expanded SOP form or Canonical SOP form.
 Ex: f(A,B,C)= A.B.C’ +A.B.C

A product term contains all the variables of the function either in complemented or
uncomplemented form is called a minterm. A minterm assumes the value 1 only for one

combination of the variables. An n variable function can have in all 2
n
 minterms to 1 is the

standard sum of products form of the function. Minterms are denoted as m0, m1,m2….. Here

suffixes are denoted by the decimal codes.

Ex: F(A,B,C)=m1+m2+m3 then m1=A’B’C , m2=AB’C, m3=A’BC

 The function in DCF is listing the decimal codes of the minterms for which F=1

F(A,B,C)=∑m(1,2,3,).

5. Standard Product of Sums form: It is called as Conjunctive Canonical form (CCF). It is also
called Expanded POS or Canonical POS.

Ex: If A=0,B=0, C=0 and the term=0

Thus function f (A, B, C) = (A’+B’+C’).(A+B’+C’).(A+B+C’)

A sum term which contains each of the n variables in either complemented form is called a
Maxterm. A maxterm assumes the value ‘0‘only for one combination of the variables. The most

there are 2
n
 maxterms. It is represented as M0,M1,M2…... Here the suffixes are decimal codes.

The CCF of f(A,B,C)=M0.M4.M6

f(A,B,C)=πM(0,4,6,7) where π or ^ represents the product of all maxterms.

Expansion of a Boolean expression in SOP form to the standard SOP form:

1. Write down all the terms.
2. If one or more variables are missing in any term.Expand that term by multiplying it with

the sum of each one of the missing variable and its complement.
3. Drop out redundant terms.

Expansion of a Boolean expression in POS form to standard POS form:

1. Write down all the terms.

2.If one or more variables are missing in any sum term. Expand that term by adding the
product of each of the missing variable and its complement.

3. Drop out redundant terms.

Conversion between Canonical forms:

The complement of a function expressed as the sum of minterms equals the sum of minterms

missing from the original function is expressed by those minterms that make the function equal

to 1 for those minterms that make the function equal to 0.

Ex: f(A,B,C)=∑m(0,2,4,6,7)

Complement isf’(A,B ,C) =∑m(1,3,5).=m1+m3+m5

Complement of deMorgan’s theorem: f= (m1 + m3 + m5) then f’= M1.M3.M5

1=Mj, the maxterm with subscript j is a complement of the minterm with the same subscript j and

vice versa. To convert one canonical form to another, interchange the symbol ∑ and π, and list

those numbers missing from the original form.

Two level NAND – NAND and NOR-NOR realizations:

Boolean expressions can be realized as hardware using logic gates. Conversely, hardware can be

translated into Boolean expressions for the analysis of existing circuits.

1. Converting Boolean Expressions to Logic:To convert, start with the output & work towards

the input.Assume the expression (AB)’+A+(B+C)’ is to be realized using AOI logic. Start with

this expression. Since it is three terms, it must be the output of a three-input OR gates. So, draw

an OR gate with three inputs as

(AB)‘ is the output of an inverter whose inputs is AB and (B+C)‘ must be the output of an
inverter whose input is B+C. so, those two inverters are as

Now AB must be output of a two-input AND gate whose inputs are A and B. And B+C must be

the output of a two-input OR gate whose inputs are B and C. so, an AND gate and an OR gate

are as

2. Converting Logic to Boolean Expressions:

To convert logic to algebra, start with the input signals and develop the terms of the Boolean
expression until the output is reached.

Since NAND logic and NOR logic are universal logic circuits which are first computed and

converted to AOI logic may then be converted to either NAND logic or NOR logic depending on

the choice. The procedure is

1. Draw the circuit in AOI logic

2. If NAND hardware is chosen, add a circle at the output of each AND gate and at the

inputs to all the AND gates.

3. If NOR hardware is chosen, add a circle at the output of each OR gate and at the inputs to
all the AND gates

4. Add or subtract an inverter on each line that received a circle in steps 2 or 3 so that the

polarity of signals on those lines remains unchanged from that of the original diagram
5. Replace bubbled OR by NAND and bubbled AND by NOR Eliminate double inversions.

Ex: Now consider a Boolean function to demonstrate the procedure for converting into

 NAND gates:

 Y = A + (B′ + C) (D′E + F)

Step 1:We first draw the logic diagram using basic gates as shown in figure before

Step 2 and 3:

Convert all AND

gates to NAND using AND-invert symbol and all OR gates to

 NAND using Invert-OR symbol.

Step 4: It is

very clear that only two inputs D′ and E are emerging in the original forms at the output. Rest

inputs A, B′, C and F are emerging as the complement of their original form.

Step 5: Now because both the symbols AND-invert and invert-OR represent a NAND gate.

Ex:

Now consider a

Boolean function to

for converting

into NOR gates:

 Y = ((A+B).(C+D))E+(F+G’)

Convert all OR gates to NOR using OR-invert and all AND gates to NOR using invert AND

symbol. Convert both symbols OR-invert and invent-AND represent a NOR gate

1 MINIMIZATION OF LOGIC FUNCTIONS USING BOOLEAN THEOREMS

2 THE KEYS TO

BOOLEAN FUNCTION

MINIMIZATION LIE IN THE THEOREMS INTRODUCED FOR BOOLEAN ALGEBRA. PARTICULARLY THE

THEOREMS SHOWN BELOW ARE USEFUL.

(a) A + AB = A (b) A (A + B) = A

(c) A + A′B = A + B (d) A (A′ + B) = AB

(e) AB + AB′ = A (f) (A + B) (A + B′) = A

Ex: Minimize F = CD + AB′C + ABC′ + BCD

3

4 A+AB=A

F = CD + AB′C + ABC′

Unit – II

Objectives:

• To familiarize with K-map method

• To understand various combinational logic circuits.

Syllabus:

Combinational Logic Circuits: The Map Method(upto 4 Variables), Don't care

conditions, design procedure, adders, subtractors, 4-bit adder-subtractor circuit, BCD

adder, carry look ahead adder, decoders and encoders, multiplexers, demultiplexers.

Outcomes:

Students will be able to

• Determine the minimized Boolean function using K-maps

• Design adders and subtractors.

• Understand 4-bit adders like BCD adder and look-a-head carry adder.

• Understand other combinational circuits like decoder, encoder, multiplexer,

demultiplexer.

Learning Material

Minimization of switching functions using K (Karnaugh) -Maps

• The K-map is a diagram made up of squares.

• Each square represents one minterm. Since any function can be expressed as a sum of

minterms, it follows that a Boolean function can be recognized from a map by the area

enclosed by those squares, whose minterms are included in the operation.

• By various patterns, we can derive alternative algebraic expression for the same operation,

from which we can select the simplest one. (One that has minimum number of literals).

• Construct the K-map as discussed above. Enter 1 in those squares corresponding to the

minterms for which function value is 1. Leave empty the remaining squares. Now in

following steps the square means the square with a value 1.

• Examine the map for squares that cannot be combined with any other squares and form group

of such single squares.

• Now, look for squares which are adjacent to only one other square and form groups

containing only two squares and which are not part of any group of 4 or 8 squares. A group

of two squares is called a pair.

• Next, group the squares which result in groups of 4 squares but are not part of an 8-squares

group. A group of 4 squares is called a quad.

• Group the squares which result in groups of 8 squares. A group of 8 squares is called octet.

• Form more pairs, quads and outlets to include those squares that have not yet been grouped,

and use only a minimum no. of groups. There can be overlapping of groups if they include

common squares.

• Omit any redundant group.

• Form the logical sum of all the terms generated by each group.

• Using Logic Adjacency Theorem we can conclude that,

✓ a group of two squares eliminates one variable,

✓ a group of four squares eliminates two variable and a group of eight squares

eliminates three variables.

There are two, three and four variable K maps.

Two Variable K-Map:

• For two variables there are four minterms and these can be conveniently placed on a 'map' as

shown in figure below

• The map consists of a square divided into four cells, one for each of the minterms.

• The possible values of the variable A are written down the left hand side of the map, labeling

the corresponding rows of the map, while the possible values of the variable B are written

along the top of the map, labeling the corresponding columns of the map.

• Hence, the top left-hand cell represents the minterm where A=0 and B=0, i.e. the minterm

AB.

• The bottom right-hand cell represents the minterm AB where A=1and B=1.

• The process of simplifying a Boolean function with the aid of a K-map is simplya process of

finding adjacencies on the function plot.

• This is best explained with the aidof a very simple example.

• Suppose that it is required to simplify the Boolean function f = A'B‘+ AB' + AB.

• Using Boolean algebra alone, it can be readily found that F=B(A' + A) + AB = AB + B'

• However, suppose that F is plotted on a 2-variable K-map, as in Figure below.

• The next stage of the simplification process is to group together adjacent cells containing 1's.

(In this context, note carefully that 'adjacent' means 'horizontally or vertically', not

'diagonally'.)

• Therefore, the bottom two cells, corresponding to A alone, may be grouped together.

• Similarly, the two left-hand cells, corresponding to B alone, may also be grouped together, as

indicated in the figure above.

• The final stage is to write down the final simplified expression for the function obtained from

the groupings thus identified. In this case, therefore, f = A + B’.

Three Variable K-Map:

• If the following Boolean function F (A, B, C) = Σ (3, 4, 6, 7).Then it is represented in k-map

as shown in figure below:

Step 1. m3 is adjacent to m7. It forms a group of two squares and is not a part of any group of 4

or 8 squares. Similarly m6 is adjacent to m7. So this is second group (pair) that is not a part of

any group of 4 or 8 squares. Now according to new definition of adjacency m4 and m6 are also

adjacent and form a pair. Moreover, this pair (group) is not a part of any group of 4 or 8 squares.

Step 2. All the 1's have already been grouped.

Step 3. The pair formed by m6 m7 is redundant because m6 is already covered in pairm4 m6 and

m7 in pair m3 m7. Therefore, the pair m6 m7 is discarded.

Step 4. The terms generated by the remaining two groups are ‘OR' operated togetherto obtain the

expression for F as follows:

Four Variable K-Map:

• If the following Boolean functionF(w, x y, z) = Σ (0, 2, 3, 6, 7, 8, 10, 11, 12, 15), then the K-

map is given in the figure below

• Minterm 8 and 12. From a pair.

• Minterms 0, 2, 8 and 10 form I quad.

• Minterms 3, 7, 11, 15 form II quad.

• Minterms 2, 3, 6, 7 form III quad.

• Therefore the final minimized expression is given by

Don't care map entries:

• The occurrence of particularinput combinations will have no effect onthe output, then those

inputs are known as don't cares.

• That is a d or a × (cross) is entered into each square to signify “don'tcare” MIN/MAX terms.

• Simplify the following Boolean function. F (A, B, C, D) = Σ (0, 1, 2, 10, 11, 14)&d (5, 8, 9)

• As shown in K-map in Figure above, by combining 1’s and d’s(Xs), three quads can be

obtained.

• The X in square 5 is left free since it does not contribute in increasing the size of any

group. Therefore, the

o I Quad covers minterms 0, 2, 10 and d8

o II Quad covers minterms 10, 11 and d8, d9.

o III Quad covers minterms 0, 1 and d8, d9.

o A pair covers minterms 10 and 14.

o Therefore the final expression is

Combinational circuit consists of logic gates whose outputs at anytime are determined directly

from the present combination of inputs without regard to previous inputs.

Combinational circuit is a combination of different gates.

For example: encoder, decoder, multiplexer and de-multiplexer etc. are some combinational

circuits.

 Some of the characteristics of combinational circuits are following:

• The output of combinational circuit at any instant of time depends only on the levels

present at input terminals.

• The combinational circuit does not use any memory. The previous state of input does

not have any effect on the present state of the circuit.

• A combinational circuit can have a n number of inputs and m number of outputs.

Block diagram

 a

 b

Combinational
circuit

Classification of combinational Logic Circuits:

Design procedure of combinational Logic circuit:

1. The problem is stated

2. The number of available input variables and required output variables is determined

3. The input and output variables are assigned letter symbols

4. The truth table that defines the required relationship between inputs and outputs is

derived

5. The simplified Boolean function for each output is obtained

6. The logic diagram is drawn.

Adders:

Digital computers perform various arithmetic operations. The most basic arithmetic operation

is the addition of two binary digits.

Different types of adders are discussed below:

Half Adder

Half adder is a combinational logic circuit that performs the addition of two bits.

Half adder circuit needs two binary inputs and two binary outputs.

The input variables designate the augend and addend bits, the output variables produce the sum

and carry.

Block diagram

 A Sum(S)

 B Carry(c)

Combinational logic circuit

Arithmetic and
logical functions

Data Transmission

Code converters

Adders,
Subtractors,
Comparators

Multiplexres,
Demultiplexers,
Encoders,Decoder
s

BCD to Seven
Segment Display

Half adder

Truth Table

Inputs Outputs

A B Sum(s) Carry(c)

0 0 0 0

0 1 1 0

1 0 1 0

1 1 0 1

Circuit Diagram:

Logic Equations:

Sum(s)= A⊕B; Carry(c)=AB;

Full Adder

The combinational circuit that performs the addition of three bits (two significant bits and

previous carry) is called full adder. It consists of three inputs and two outputs. Two significant

bits represented as A and B and the third input Cin represents the carry from the previous lower

significant position. The two outputs are Sum (s) and Carry(c).

Block diagram:

 A Sum(s)

 B Carry(c)

 Cin

Truth Table

Inputs outputs

A B Cin Sum Carry

0 0 0 0 0

0 0 1 1 0

Full Adder

0 1 0 1 0

0 1 1 0 1

1 0 0 1 0

1 0 1 0 1

1 1 0 0 1

1 1 1 1 1

Circuit Diagram:

Logic Equations:

Sum(s)=A ⊕B⊕Cin

Carry(c)=AB+BCin+ACin

Full adder implementation using two halfadders and orgate:

Logic Diagram:

N-Bit Parallel Adder

The Full Adder is capable of adding only two single digit binary number along with a carry

input. But in practice we need to add binary numbers which are much longer than just one bit.

To add two n-bit binary numbers we need to use the n-bit parallel adder. It uses a number of

full adders in cascade. The carry output of the previous full adder is connected to carry input of

the next full adder.

4 Bit Parallel Adder

In the block diagram, A0 and B0 represent the LSB of the four bit words A and B. Hence Full

Adder-0 is the lowest stage. Hence its Cin has been permanently made 0 .The rest of the

connections are exactly same as those of n-bit parallel adder is shown in fig. The four bit

parallel adder is a very common logic circuit.

Block diagram:

Half Subtractor

A Half subtractor is a combinational circuit that subtracts two bits and produces their

difference. It produces the difference between the two binary bits at the input and also

produces an output Borrow to indicate if a1 has been borrowed. In the subtraction A−B, A is

called as Minuend bit and B is called as Subtrahend bit.

 A Difference(D)

 B Borrow(B)

Truth Table

Inputs Outputs

A B Difference(D) Borrow(B)

0 0 0 0

Half Subtractor

0 1 1 1

1 0 0 1

1 1 0 0

Logic Diagram:

Logic Equations:

difference(D)= A⊕B; Borrow(B)=A1B;

Full Subtractor:

The disadvantage of a half subtractor is overcome by full subtractor. The full subtractor is a

combinational circuit with three inputs A, B, Bin and two output D and Bout. A is the 'minuend',

B is 'subtrahend', C is the 'borrow' produced by the previous stage, D is the difference output

and B is the borrow output.

 A Difference(D)

 B Borrow(Bout)

 Bin

Truth Table

Inputs outputs

A B Bin D Bout

0 0 0 0 0

0 0 1 1 1

0 1 0 1 1

0 1 1 0 1

1 0 0 1 0

1 0 1 0 0

1 1 0 0 0

1 1 1 1 1

Full Subtractor

Circuit Diagram

Logic Equations:

 difference(D)= A ⊕B⊕Bin

4 Bit Parallel Subtractor

The number to be subtracted B is first passed through inverters to obtain its 1's complement.

The 4-bit adder then adds A and 2's complement of B to produce the subtraction. S3S2S1S0

represents the result of binary subtraction A−B and carry output Cout represents the polarity of

the result. If A>B then Cout=0 and the result of binary form A−B then Cout=1 and the result is

in the 2's complement form.

Block diagram

N-Bit Parallel Subtractor

The subtraction can be carried out by taking the 1's or 2's complement of the number to be

subtracted. For example we can perform the subtraction A−B by adding either 1's or 2's

complement of B to A. That means we can use a binary adder to perform the binary subtraction.

4-Bit Adder-Subtractor Circuit

This figure represents a 4-bit adder-subtractor circuit. Here the addition and subtraction

operations are combined in to one circuit with one common binary adder. The mode input S

controls the operation.

When S=0, the circuit is an adder

When S=1, the circuit is a subtractor

Each XOR gate receives input S and one of the inputs of B. when S=0, we have B 0 = B. the

full adder receives the value of B, the input carry is 0 and the circuit performs A+B.

When S=1, we have B 1 = B' and C1=1. The B inputs are complemented and a 1 is added

through the input carry. The circuit performs the operation A plus the 2's complement of B.

BCD Adder

The logic circuit that detects the necessary correction can be derived from the entries in the table.

It is obvious that a correction is needed when the binary sum has an output carry K = 1. The

other six combinations from 1010 through 1111 that need a correction have a 1 in position Z8.

To distinguish them from binary 1000 and 1001, which also have a 1 in position Z8, we specify

further that either Z 4 or Z2 must have a 1. The condition for a correction and an output carry

can be expressed by the Boolean function

 C = K + Z8Z4 + Z8Z2

When C = 1, it is necessary to add 0110 to the binary sum and provide an output carry for the

next stage.

Look Ahead Carry Adder

 The Figure shows the full adder circuit used to add the operand bits in the ith column;

namely Ai & Bi and the carry bit coming from the previous column (Ci).

In this circuit, the 2 internal signals Pi and Gi are given by:

Pi = Ai Bi ……………………..(1)

Gi = Ai Bi …………………..……(2)

The output sum and carry can be defined as :

Si = Pi Ci ……………………(3)

C i +1 = Gi Pi C i …………(4)

Gi is known as the carry Generate signal since a carry (Ci+1) is generated whenever Gi =1,

regardless of the input carry (Ci). Pi is known as the carry propagate signal since whenever Pi =1,

the input carry is propagated to the output carry, i.e., Ci+1. = Ci (note that whenever Pi =1, Gi =0).

Computing the values of Pi and Gi only depend on the input operand bits (Ai & Bi) as clear from

the Figure and equations. Thus, these signals settle to their steady-state value after the

propagation through their respective gates.

 C1 = G0 + P0C0

 C2 = G1 + P1C1 = G1 + P1 (G0 + P0C0) = G1 + P1G0 + P1P0C0

 C3 = G2 + P2C2 = G2 + P2G1 + P2P1G0 + P2P1P0C0 C4

 = G3 + P3C3= G3 + P3G2 + P3P2G1 + P3P2P1G0 + P3P2P1P0C0

In general, the ith carry output is expressed in the form Ci = Fi (P's, G's , C0).

In other words, each carry signal is expressed as a direct SOP function of C0 rather than its

preceding carry signal.

Since the Boolean expression for each output carry is expressed in SOP form, it can be

implemented in two-level circuits.

The 2-level implementation of the carry signals has a propagation delay of 2 gates,

The 4-bit carry look-ahead (CLA) adder consists of 3 levels of logic:

Multiplexers:

A digital multiplexer is a combinational circuit that selects binary information fron one of many

input lines and directs it to a single output line.

The selection of a particular input line is controlled by a set of selection lines.

Normaliy there are 2n input lines and an selection lines whose bit combinations determine

which input is selected.

E is called the strobe or enable input which is useful for the cascading. It is generally an active

low terminal that means it will perform the required operation when it is low.

 Block diagram

Multiplexers come in multiple variations

• 2:1 multiplexer

• 4:1 multiplexer

• 16:1 multiplexer

• 32:1 multiplexer

2X1 Multiplexer:

A 2 to 1 line multiplexer consists of 2 input lines and one select line and single output line.

Block Diagram:

 D0

 D1

 Y

 E

 S

Truth Table:

Enable Select Output

E S Y

0 X 0

1 0 D0

1 1 D1

 X=Don't Care

Demultiplexers

A demultiplexer performs the reverse operation of a multiplexer i.e. it receives one input and

distributes it over several outputs. It has only one input, n outputs, m select input. At a time

only one output line is selected by the select lines and the input is transmitted to the selected

output line.

Demultiplexer comes in multiple variations.

• 1:2 demultiplexer

• 1:4 demultiplexer

• 1:16 demultiplexer

• 1:32 demultiplexer

Block diagram

2x1 MUX

Truth Table

Decoder

A decoder is a combinational circuit. It has n input and to a maximum= 2n outputs. Decoder is

identical to a demultiplexer without any data input. It performs operations which are exactly

opposite to those of an encoder.

Block diagram

Examples of Decoders are following.

• Code converters

• BCD to seven segment decoders Nixie tube decoders

• Relay actuator

2 to 4 Line Decoder

The block diagram of 2 to 4 line decoder is shown in the fig. A and B are the two inputs where

D3 through D0 are the four outputs. Truth table explains the operations of a decoder. It shows

that each output is 1 for only a specific combination of inputs.

Block diagram Truth Table

Logic Circuit

Encoder

Encoder is a combinational circuit which is designed to perform the inverse operation of the

decoder. An encoder has n number of input lines and m number of output lines. An encoder

produces an m bit binary code corresponding to the digital input number. The encoder accepts

an n input digital word and converts it into an m bit another digital word.

Block diagram

Examples of Encoders are following.

• Priority encoders

• Decimal to BCD encoder Octal to binary encoder

• Hexadecimal to binary encoder

Priority Encoder

This is a special type of encoder. Priority is given to the input lines. If two or more input line

are 1 at the same time, then the input line with highest priority will be considered. There are

four input D0, D1, D2, D3 and two output Y0, Y1. Out of the four input D3 has the highest

priority and D0 has the lowest priority. That means if D3=1 then Y1Y1=11 irrespective of the

other inputs. Similarly if D3= 0 and D2=1 then Y1Y0=10 irrespective of the other inputs.

Block diagram

Truth Table

Logic Circuit

• Implement full adder circuit whose outputs are given as : S (x,y,z) = Σ (1,2,4,7)

C(x,y,z) = Σ(3,5,6,7) with a suitable decoder and external gates

▪ Implement the function F(x,y,z) = m(1,2,6,7) x, and y should be connected with the

same order to S1and S0respectively

▪ Implementation of the Boolean function F (A, B, C, D) = ∑(1, 3, 4, 11, 12, 13, 14, 15)

using 8 X 1 MUX

Assignment-Cum-Tutorial Questions

Section-A

1. A full subtractor circuit requires ________.

a) Two inputs and two outputs b) Two inputs and three outputs

c) Three inputs and one output d)Three inputs and two outputs

2. A de multiplexer has ________.

a) One data input and a number of selection inputs, and they have several outputs

b) One input and one output

c) Several inputs and several outputs

d) Several inputs and one output

3. How many outputs are on a BCD decoder?

a) 4 b) 16 c) 8 d) 10

4. A decoder converts ________.

a) Non coded information into coded form b) Coded information into non coded form

c) HIGHs to LOWs d) LOWs to HIGHs

5. Parallel Adders are

a) Combinational logic circuits b) Sequential logic circuits

c) Both of the above d) None of the above

6. A Full Adder can be realized using

 a) One half adder, two OR gates b) Two half adders, one OR gate

 c) Two half adders, two OR gates d) Two half adders, one AND gate

7. In which of the following adder circuits is the carry ripple delay is eliminated?

 a) Half adder b) Full adder c) Parallel adder d) Carry-look-ahead-adder

8. A multiplexer is also known as

 a) data accumulator b) data restorer c) data selector d) data distributor

9. Which logic device is called a distributor?

 a) Multiplexer b) Demultiplexer c) Encoder d) Decoder

10. How many inputs are on a BCD decoder?

a) 4 b) 16 c) 8 d) 10

11. Which digital system translates coded characters into a more useful form?

a) Encoder b) Display c) Counter d) Decoder

12. If f(A,B,C,D)=1 then the K-map contains _________ number of logic 1's is

a) 4 b) 8 c) 16 d) 32

13. In a hexadecimal to binary priority encoder, ______ has ______ priority.

a) 0, high b) 7, low c) F, low d) F, high

14. What control signals may be necessary to operate a 1-line-to-16 line decoder?

a) Flasher circuit control signal b) A LOW on all gate enable inputs

c) Input from a hexadecimal counter d) A HIGH on all gate enable circuits

15. The logic function implemented by the circuit below is (ground implies a logic “0”)

a) F= AND (P, Q) b) F= OR (P, Q) c) F= XNOR (P, Q) d) F= XOR (P, Q)

16. A digital system is required to amplify a binary-encoded audio signal. The user should be able

to control the gain of the amplifier from minimum to a maximum in 100 increments. The

minimum number of bits required to encode, in straight binary, is

a) 8 b) 6 c) 5 d) 7

17. The minimum number of 2-input NAND/NOR gates required to realize a half adder is

 a) 3 b) 4 c) 5 d) 6

18. The minimum number of 2-input NAND gates required to realize a full adder / full subtractor is

a) 8 b) 9 c) 10 d) 12

19. The K – map for a Boolean function is shown in the figure. The number of essential prime

 implicants for this function is

a) 4 b) 5 c) 6 d) 7

20. A function F(A,B,C) contains minterms 1,2,3,5,6,7, its complement contains

a) Σm (0,4) b) Σm(1,2,3,5,6,7) c) ПM (1,2,3,5,6,7) d) ПM (0,4)

Section-B

1. Simplify the following three variable Boolean expression using karnaugh map method.

 Y= ABC' +A'B'C'+ABC+AB'C'.

2. Using K-Map simplify the following Boolean function

 F=A'BC+ABC'+ABC+AB'C'

3. Define combinational logic? Write the design procedure for combinational circuits.

4. Explain the operation of half adder? Realize full adder using logic gates.

5. Explain the operation of half subtractor? Realize full subtractor using logic gates.

6. Discuss the functional principle of 4-bit ripple carry adder. what is its major disadvantage?

7. What is decoder? Draw the logic diagram of 3 to 8 line decoder and explain its operation.

8. What is the difference between encoder and priority encoder? Give the implementation of a 4-

bit priority encoder?

9. Discuss how four bit BCD adder circuit is designed. Explain its operation.

10. Briefly describe the concept of look-ahead carry generation with respect to its use in adder

circuits.

11. Draw the circuit diagram of a 4-bit adder/subtractor and briefly describe its functional

principle.

12. Implement the following function with 8 to 1 multiplexer:

13. Implement the three-variable Boolean function using an 8-to-1multiplexer

14. Realize the logic expression given below using a (i) 8:1 MUX (ii) 16:1 MUX

 f=∑ m (0,1,3,5,8,11,12,14,15)

15. Design a 32:1 multiplexer using two 16:1 and 2:1 multiplexers. Implement the following

multiple output combinational logic circuit using a 4 to 16 decoder:

F1=∑ m (0,1,4,7,12,14,15), F2=∑ m (1,3,6,9,12), F3=∑ m (2,3,7,8,10) and F4=∑ m (1,3,5)

16. Implement the full adder sum and carry functions with decoder and multiplexers.

17. Develop a 3-to-8 line decoder using NOR gates only, and draw its logic diagram.

18. A combinational circuit is defined by the following equations:

 f l = AB + A'B'C', f2 = A + B + C', f3 = A'B + AB'. Design a circuit which will implement

 these three equations using a decoder and NAND gates external to the decoder.

19. Design a combinational circuit that detects an error in the representation of a decimal digit in

BCD. The output of the circuit must be equal to logic 1 when the inputs contain any one of the

six unused bit combinations in the BCD code.

20. A combinational circuit is defined by the following three functions F1 = x'y'+xyz', F2 = x'+y,

F3=xy+x'y'. Design the circuit with a decoder and external gates.

21. A logic function has four inputs A, B, C and D that will produce output 1 whenever two

adjacent input variables are 1’s. Treat A and D are also adjacent. Implement this logic function

using 8 x 1 and 4 x 1 multiplexers.

22. Obtain logical functions to design decimal to octal using priority encoder.

23. Obtain the minimal expression for Ʃm(2,3,5,7,9,11,12,13,14,15) and implement it in NOR

logic

24. Obtain the minimal expression for ПM(2,3,5,7,9,11,12,13,14,15) and implement it in NAND

logic

25. With the use of maps, find the simplest sum-of-products form of the function F = fg where f =

abc' + c'd + a'cd' + b'cz' and g = (a + b + c' + d')(b' + c' + d)(a' + c + d')

Section-C

1. The output Y of a 2 bit comparator is logic 1whenever 2-bit input A is greater than 2-bit input B.

The no. of combinations for which the output is logic 1 is GATE-2012

a) 4 b) 6 c) 8 d) 10

2. The logic function implemented by the circuit below is (ground implies a logic ‘0’)

GATE-2011

a) F= AND (P,Q) b) F= OR (P,Q) c) F= XNOR (P,Q) d) F= XOR (P,Q)

3. The Boolean function realized by the logic circuit shown is

GATE-2010

 a) F= Σm(0,1,3,5,9,10,14) b) F= Σm(2,3,5,7,8,12,13)

 c) F= Σm(1,2,4,5,11,14,15) d) F= Σm(2,3,5,7,8,9,12)

4. In the following circuit X is given by GATE-2007

a)

X=AB'C'+A'BC'+A'B'C+ABC. b) X= AB'C'+A'BC'+A'B'C+ABC

c) X=AB +BC+AC d) X=A'B'+B'C'+A'C'

5. The Boolean function f implemented in figure using two input multiplexers is GATE-2005

a) AB'C + ABC' b) ABC + AB'C' c) A'BC + A'B'C' d) A'B'C + A'BC'

6. The minimum no. of 2:1 multiplexers required to realize a 4:1multiplexer is GATE-2004

a) 1 b) 2 c) 3 d) 4

7. The circuit shown in figure below has 4 boxes each described by inputs P, Q, R and outputs Y, Z

with Y= P Å Q Å R; Z=RQ+ P'R+Q P'. The circuit acts as a GATE-2003

a) 4 bit adder giving P+Q b) 4 bit subtractor giving P-Q

c) 4 bit subtractor giving Q-P d) 4 bit adder giving P+Q+R

8. The Boolean function f implemented in figure using 2 input multiplexers is GATE 2005

a) AB'C+ABC' b) ABC+AB'C' c) A'BC+A'B'C' d) A'B'C+A'BC'

9. The minimum number of 2 to 1MUX requires to realize a 4 to 1 MUX are GATE 2004

a) 1 b) 2 c) 3 d) 4

10. The circuit shown in figure converts GATE 2003

a) BCD to binary code b) Binary to Excess-3 c) Excess-3 to gray d) Gray to binary

11. Without any additional circuitry, an 8:1 MUX can be used to obtain GATE 2003

a) Some but not all Boolean functions of 3 Variables

b) All functions of 3 variables but not of 4 variables

c) All functions of 3 variables and some but not all functions of 4 variables

d) All functions of 4 variables

12. In the TTL circuit in figure below s2 to s0 are select lines and x7 and x0 are input lines . s0 and

x0 are LSB's. The output Y is GATE-2001

a) indeterminate b) A⊕B c) (A⊕B)’ d) C’(A⊕B) + C(A⊕B)’

13. For a binary halfsubtractor having inputs A and B ,The correct set of logical expressions for

the outputs D and X are

a) D=AB+A'B, X=A'B c) D=A'B+AB', X=A'B GATE-1999

b) D=A'B+AB', X=AB' d) D=AB+A'B', X=AB'

14. A 2 bit binary multipler can be implemented using GATE-1997

a) 2 inputs AND only b) 2 input XORS and 4 input AND gates only

c) Two 2 inputs NORS and one XOR gate d) XOR gates and shift registers

15. The output of the circuit shown in figure is equal to GATE-1995

a) 0 b) 1 c) A'B+AB' d) (AB)'.(AB)'

16. The logic realized by the circuit shown in figure is: GATE-1992

a) F=A.C b) F=A+C c) F=B.C d) F=B+C

17. The following boolean expression Y=

 can be minimized to

 GATE-2007

a) b)

c) d)

18. The number of product terms in the minimized sum of product expression obtained through

the following karnaugh map (where d indicates don't care conditions).

 GATE-2006

1 0 0 1

0 D 0 0

0 0 D 1

0 0 0 1

a) 2 b)3 c)4 d)5

19. The boolean expression for the truth table shown is GATE-2005

A B C F
0 0 0 0
0 0 1 0
0 1 0 0
0 1 1 1
1 0 0 0
1 0 1 0
1 1 0 1
1 1 1 0

a) c)

b) d)

20. The Boolean expression is equivalent to GATE-2004

 a) c)

 b) d)

UNIT – III

 Sequential Logic Circuits

Objectives:

• To familiarize with the concepts of different sequential circuits.

Syllabus:

Design procedure, Flip-flops, Truth tables and excitation tables, Conversion of flip-flops, Design of

counters, Ripple counters, Synchronous counters, Ring counter, Johnson counter, Registers, Shift

registers, Universal shift register.

Outcomes:

Students will be able to

• understand the functionality of different latches and flip-flops..

• distinguish the working of latch and flip-flop.

• convert from one flip-flop to another flip-flop

• classify various types of registers.

• design synchronous and asynchronous counters.

Learning Material

INTRODUCTION:

• Combinational circuits are those whose output at any instant of time is entirely dependent

on the input present at that time.

• On the other hand Sequential circuits are those in which output at any given time is not

only dependent on the present input but also on previous outputs. Naturally, such circuits

must record the previous outputs which give rise to memory.

• Often, there are requirements of digital circuits whose output remain unchanged, once set,

even if the inputs are removed. Such devices are referred as “memory elements”, each of

which can hold 1-bit of information. These binary bits can be retained in the memory

indefinitely (as long as power is delivered) or until new information is feeded to the circuit.

Fig 1: Block diagram of a sequential circuit

• Block diagram of a sequential circuit, which can be regarded as a collection of memory

elements and combinational circuit as shown in above Fig.1.

• A feedback path is formed by using memory elements, input to which is the output of

combinational circuit.

• The binary information stored in memory element at any given time is defined as the state

of sequential circuit at that time. Present contents of memory elements are referred as the

present state.

• The combinational circuit receives the signals from external input and from the memory

output and determines the external output.

• They also determine the condition and binary values to change the state of memory. The

new contents of the memory elements are referred as next state and depend upon the

external input and present state.

• Hence, a sequential circuit can be completely specified by a time sequence of inputs,

outputs and the internal states. In general, clock is used to control the operation. The clock

frequency determines the speed of operation of a sequential circuit.

CLASSIFICATION OF SEQUENTIAL CIRCUITS:

There exist two main categories of sequential circuits, namely synchronous and asynchronous

sequential circuits.

i. Asynchronous Sequential Circuits:

• Sequential circuits whose behavior depends upon the sequence, in which the inputs are applied,

are called Asynchronous Sequential Circuits.

• In these circuits, outputs are affected whenever a change in inputs is detected. Memory

elements used in asynchronous circuits mostly are time delay devices.

• The memory capability of time delay devices is due to the propagation delay of the devices.

Propagation delay produced by the logic gates is sufficient for this purpose.

• Hence “An Synchronous sequential circuit can be regarded as a combinational circuit with

feedback”. However feedback among logic gates makes the asynchronous sequential circuits,

often susceptible to instability.

• As a result they may become unstable. This makes the design of asynchronous circuits very

tedious and difficult.

ii. Synchronous Sequential Circuit:

• It may be defined as a sequential circuit, whose state can be affected only at the discrete

instants of time.

• The synchronization is achieved by using a timing device, termed as System Clock Generator,

which generates a periodic train of clock pulses.

• The clock pulses are feed to entire system in such a way that internal states (i.e. memory

contents) are affected only when the clock pulses hit the circuit.

STORAGE ELEMENTS:

• Latches

• A storage element in a digital circuit can maintain a binary state indefinitely (as long as power

is delivered to the circuit), until directed by an input signal to switch states.

• The major differences among various types of storage elements are in the number of inputs

they possess and in the manner in which the inputs affect the binary state.

• Storage elements that operate with signal levels (rather than signal transitions) are referred to

as latches; those controlled by a clock transition are flip-flops. Latches are said to be level

sensitive devices; flip-flops are edge sensitive devices.

• The two types of storage elements are related because latches are the basic circuits from which

all flip-flops are constructed. Although latches are useful for storing binary information and for

the design of asynchronous sequential circuits, they are not practical for use as storage

elements in synchronous sequential circuits.

i. SR Latch

• The SR latch is a circuit with two cross-coupled NOR gates or two cross-coupled NAND gates,

and two inputs labeled S for set and R for reset.

• Both the versions are shown in Fig 2(a) & Fig 2(b). The latch has two useful states. When

output Q = 1 and Q’ = 0, the latch is said to be in the set state. When Q = 0 and Q’ = 1, it is in

the reset state. SR

SR Latch with Control Input

• The operation of the basic SR latch can be modified by providing an additional input signal

that determines (controls) when the state of the latch can be changed by determining whether S

and R (or S’ and R’) can affect the circuit.

• An SR latch with a control input is shown in Fig 2(c) which consists of the basic SR latch and

two additional NAND gates. The control input En acts as an enable signal for the other two

inputs.

• The outputs of the NAND gates stay at the logic-1 level as long as the enable signal

remains at 0. This is the quiescent condition for the SR latch. When the enable input goes to 1,

information from the S or R input is allowed to affect the latch.

• The set state is reached with S = 1, R = 0, and En = 1 (active-high enabled). To change to the

reset state, the inputs must be S = 0, R = 1, and En = 1. In either case, when En returns to 0, the

circuit remains in its current state.

• The control input disables the circuit by applying 0 to En, so that the state of the output does

not change regardless of the values of S and R. Moreover, when En = 1 and both the S and R

inputs are equal to 0, the state of the circuit does not change.

• These conditions are listed in the function table accompanying the diagram. An indeterminate

condition occurs when all three inputs are equal to 1. This condition places 0’s on both inputs

of the basic SR latch, which puts it in the undefined state.

ii. D Latch (Transparent latch)

• One way to eliminate the undesirable condition of the indeterminate state in the SR latch is to

ensure that inputs S and R are never equal to 1 at the same time.

• This is done in the D latch, shown in Fig.3. This latch has only two inputs: D (data) and En

(enable). The D input goes directly to the S input, and its complement is applied to the R input.

• As long as the enable input is at 0, the cross-coupled SR latch has both inputs at the 1 level and

the circuit cannot change state regardless of the value of D. The D input is sampled when En =

1.

• If D = 1, the Q output goes to 1, placing the circuit in the set state. If D = 0, output Q goes to 0,

placing the circuit in the reset state.

Fig. 3 D-latch

The graphical representration of S-R and D-latch is as shown below

FLIPFLOPS

• The synchronous sequential circuit which uses clock at the input of memory element is

referred as Clocked Sequential circuit and the memory element in this circuit known as Flip-

Flop that can store 1-bit of information, and thus forms a 1-bit memory cell.

• These circuits have two outputs, one giving the value of binary bit stored in it and the other

gives the complemented value.

• The real differences among various flip-flops are the number of inputs and the manner in

which binary information can be entered into it

• The flip-flops are 1-bit memory cells that can maintain the stored bit for desired period of time

which consists of two stable stages so it is called as Bi-stable device and states are 0V and +

5V corresponding to Logic 0 and Logic 1 respectively

i. RS Flip-Flop

• A flip-flop circuit can be constructed either by using two 2-input OR gate or NAND gates.

These circuits consists of a cross coupled connection from output of one gate to the input of

the other gate constitutes a feedback path. Each flip-flop has two outputs, Q and Q’, and two

inputs, set, reset.

• The operation of basic flip-flop can be modified by proving an additional control input that

determines when the state of the circuit is to be changed.

• An RS flip-flop with a clock pulse (CP) input, which consists of a basic flip-flop circuit and

two additional NAND gates, is as shown in Fig. 4.

Fig. 4. RS flip-flop with NAND gates

ii. D-Flip-flop

• The SR latch, which has two inputs S and R. At any time to store a bit, must activate both the

inputs simultaneously. This may be troubling in some applications. Use of only one data line is

convenient in such applications.

• Moreover the forbidden input combination S = R = 1 may occur unintentionally, thus leading

the flip-flop to indeterminate state. In order to deal such issues, SR flip-flop is further modified

as shown in Fig 5.

• The resultant is referred as D flip-flop which has only one input labelled D (called as Data

input). An external NAND gate (connected as inverter) is used to ensure that S and R inputs are

always complement to each other. Thus to store information in this latch, only one signal has to

be generated.

Fig 5: D flip-flop or D latch

• Operation of this flip-flop is straight forward. At any instant of time the output Q is same as D

(i.e. Q = D). Since output is exactly same as the input, the latch may be viewed as a delay unit.

• The flip-flop always takes some time to produce output, after the input is applied. This is called

propagation delay.

• Thus it is said that the information present at point D (i.e. at input) will take a time equal to the

propagation delay to reach to Q. Hence the information is delayed. For this reason it is often

called as Delay (D) Flip-Flop.

iii. JK FLIPFLOP

• A JK flip-flop is a refinement of the SR flip-flop in that the indeterminate state of the SR type is

defined in the JK type.

• Inputs J and K behave like inputs S and R to set and clear the flip-flop (note that in a JK flip-flop,

the letter J is for set and the letter K is for clear).

• When logic 1 inputs are applied to both J and K simultaneously, the flip-flop switches to its

complement state, ie., if Q=1, it switches to Q=0 and vice versa. A clocked JK flip-flop is shown

in Fig. 6.

• Output Q is ANDed with K and CP inputs so that the flip-flop is cleared during a clock pulse

only if Q was previously 1.

• Similarly, ouput Q' is ANDed with J and CP inputs so that the flip-flop is set with a clock pulse

only if Q' was previously 1.

Fig.6 JK Flip-flop

• Note that because of the feedback connection in the JK flip-flop, a CP signal which remains a 1

(while J=K=1) after the outputs have been complemented once will cause repeated and

continuous transitions of the outputs.

• To avoid this, the clock pulses must have a time duration less than the propagation delay through

the flip-flop.

• The restriction on the pulse width can be eliminated with a master-slave or edge-triggered

construction. The same reasoning also applies to the T flip-flop presented next.

iv. T Flip-Flop

• The T flip-flop is a single input version of the JK flip-flop which is shown, in Fig.7and it is

obtained from the JK type if both inputs are tied together. The output of the T flip-flop "toggles"

with each clock pulse.

Fig. 7 Clocked T flip-flop

Race around Condition and Solution

• Whenever the width of the trigger pulse is greater than the propagation time of the flip-flop, then

flip-flop continues to toggle 1-0-1-0 until the pulse turns 0.

• When the pulse turns 0, unpredictable output may result i.e. the state and output not known.

This is called race around condition.

• In level-triggered flip-flop circuits, the circuit is always active when the clock signal is high,

and consequently unpredictable output may result. For example, during this active clock period,

the output of a T-FF may toggle continuously.

• The output at the end of the active period is therefore unpredictable. To overcome this problem,

edge triggered circuits can be used whose output is determined by the edge, instead of the level,

of the clock signal, for example, the rising (or trailing) edge.

• Another way to resolve the problem is the Master-Slave circuit shown in Fig 8.

Fig 8: Master slave circuit

The operation of a Master-Slave FF has two phases as shown in Fig.8

• During the high period of the clock, the master FF is active, taking both inputs and feedback from

the slave FF. The slave FF is de-activated during this period by the negation of the clock so that

the new output of the master FF won’t affect it.

• During the low period of the clock, the master FF is deactivated while the slave FF is active. The

output of the master FF can now trigger the slave FF to properly set its output. However, this

output will not affect the master FF through the feedback as it is not active.

Fig 9: Master slave operation

• It is seen that the trailing edge of the clock signal will trigger the change of the output of the

Master-Slave FF. The master-slave combination can be constructed for any type of flip-flop by

adding a clocked RS flip-flop with an inverted clock to form the slave. A master-slave JK flip-

flop constructed with NAND gates is shown in Fig.10.

• It consists of two flip-flops; gates1 through 4 form the master flip-flop, and gates 5 through 8

form the slave flip-flop. The information presented at the J and K inputs is transmitted to the

master flip-flop on the positive edge of the clock pulse and is held there until the negative edge

of the clock pulse occurs, after which it is allowed to pass through to the slave flip-flop.

• The clock input is normally 0, which keeps the outputs of gates 1 and 2 at the 1 level. This

prevents the J and K inputs from affecting the master flip-flop.

• The slave flip-flop is a clocked RS type, with the master flip-flop supplying the inputs and the

clock input being inverted by gate 9. When the clock is 0, the output of gate 9 is 1, so that output

Q is equal to Y, and Q’ is equal to Y’.

• When the positive edge of a clock pulse occurs, the master flip-flop is affected and may switch

states. The slave flip-flop is isolated as long as the clock is at the level1, because the output of

gate 9 provides a 1 to both inputs of the NAND basic flip-flop of gates 7 and 8.

• When the clock input returns to 0, the master flip-flop is isolated from J and K inputs and the

slave flip-flop goes to the same state as the master flip-flop.

Fig.10 Clocked master-slave JK flip-flop

Operating Characteristics of Flip-flops

The operation characteristics specify the performance, operating requirements, and operating

limitations of the circuits. The operation characteristics mentions here apply to all flip-flops

regardless of the particular form of the circuit.

Propagation Delay Time—is the interval of time required after an input signal has been applied

for the resulting output change to occur.

Set-up Time—is the minimum interval required for the logic levels to be maintained constantly on

the inputs (J and K, or S and R, or D) prior to the triggering edge of the clock pulse in order for the

levels to be reliably clocked into the flip-flop.

Hold Time—is the minimum interval required for the logic levels to remain on the inputs after the

triggering edge of the clock pulse in order for the levels to be reliably clocked into the flip-flop.

Maximum Clock Frequency—is the highest rate that a flip-flop can be reliably triggered.

Power Dissipation—is the total power consumption of the device.

Pulse Widths—are the minimum pulse widths specified by the manufacturer for the Clock, SET

and CLEAR inputs.

Flip-Flop Applications

• Frequency Division

• Parallel Data Storage

FLIP-FLOP EXCITATION TABLE

• The characteristic table is useful during the analysis of sequential circuits when the value of flip-

flop inputs is known and if the value of the flip-flop output Q after the rising edge of the clock

signal. As with any other truth table, the map method is used to derive the characteristic

equation for each flip-flop.

• During the design process the transition from present state to the next state s usually known and

flip-flop input conditions are found that will cause the required transition. For this reason a table

that lists the required inputs for a given change of state is needed. Such a list is called the

excitation table.

• There are four possible transitions from present state to the next state. The required input

conditions are derived from the information available in the characteristic table.

• The symbol X in the table represents a “don’t care” condition, that is, it does not matter whether

the input is 1 or 0.

• The different types of flip flops (RS, JK, D, T) can also be described by their excitation, table as

shown in Fig. The left side shows the desired transition from Qn to Qn+1, the right side gives

the triggering signals of various types of FFs needed for the transitions.

Table 1:Excitation table

FLIP-FLOP CONVERSIONS

• To convert a given type A FF to a desired type B FF some conversion logic is used and the key

here is to use the excitation table specified in Table 1 which shows the necessary triggering

signal (S, R, J, K, D and T) for a desired flip flop state transition Qn →Qn+1 is reproduced here.

Example 1. Convert a D-FF to a T-FF:

 A circuit is to be designed which is used to generate the triggering signal D as a function of T and

Q : D = f (T, Q)

Consider the excitation table:

Treating D as a function of T and current FF state Q Qn we have D = T'Q + TQ = T⊕Q

Fig. 11 Convert a D-FF to a T-FF

Example 2. Convert a RS-FF to a D-FF:

A circuit is to be designed which can generate the triggering signals S and R as functions of D and

Q. Consider the excitation table:

The desired signal S and R can be obtained as functions of T and current FF state Q from the

Karnaugh maps:

Fg.12 Convert a RS-FF to a D-FF

Example 3. Convert a RS-FF to a JK-FF.

We need to design the circuit to generate the triggering signals S and R as functions of J, K and Q.

Consider the excitation table.

The desired signals S and R as function J, K and current FF state Q can be obtained from the

Karnaugh maps:

Fig.13 Convert a RS-FF to a JK-FF

RIPPLE COUNTER

• A register that goes through a prescribed sequence of states upon the application of input pulses

is called a counter.

• The input pulses may be clock pulses, or they may originate from some external source and may

occur at a fixed interval of time or at random.

• The sequence of states may follow the binary number sequence or any other sequence of states.

• A counter that follows the binary number sequence is called a binary counter. An n ‐bit binary

counter consists of n flip‐flops and can count in binary from 0 through 2n - 1.

• Counters are available in two categories: ripple counters and synchronous counters.

• In a ripple counter, a flip‐flop output transition serves as a source for triggering other flip‐flops.

In other words, the C (clock)input of some or all flip‐flops are triggered, not by the common

clock pulses, but rather by the transition that occurs in other flip‐flop outputs.

• In a synchronous counter, the C inputs of all flip‐flops receive the common clock.

Binary Ripple Counter

• A ripple counter is an asynchronous counter where only the first flip-flop is clocked by an

external clock. All subsequent flip-flops are clocked by the output of the preceding flip-flop.

• Asynchronous counters are also called ripple-counters because of the way the clock pulse ripples

it way through the flip-flops.

• The MOD of the ripple counter or asynchronous counter is 2n if n flip-flops are used. For a 4-bit

counter, the range of the count is 0000 to 1111.

• A counter may count up or count down or count up and down depending on the input control.

The count sequence usually repeats itself. When counting up, the count sequence goes from

0000, 0001, 0010, ... 1110 , 1111 , 0000, 0001, ... etc.

• When counting down the count sequence goes in the opposite manner: 1111, 1110, ... 0010,

0001, 0000, 1111, 1110, ... etc.

• The complement of the count sequence counts in reverse direction. If the uncomplemented

output counts up, the complemented output counts down. If the uncomplemented output counts

down, the complemented output counts up.

• There are many ways to implement the ripple counter depending on the characteristics of the flip

flops used and the requirements of the count sequence.

▪ Clock Trigger: Positive edged or Negative edged

▪ JK or D flip-flops

▪ Count Direction: Up, Down, or Up/Down

• Asynchronous counters are slower than synchronous counters because of the delay in the

transmission of the pulses from flip-flop to flip-flop.

• With a synchronous circuit, all the bits in the count change synchronously with the assertion of

the clock. Examples of synchronous counters are the Ring and Johnson counter.

• It can be implemented using D-type flip-flops or JK-type flip-flops. The circuit below uses 2 D

flip-flops to implement a divide-by-4 ripple counter (2n = 22 = 4). It counts down.

Fig. 13 Two bit Ripple Conter

• Click on CLK (Red) switch and observe the changes in the outputs of the flip flops. The

CLK switch is a momentary switch (similar to a door bell switch - normally off).

• PR and CLR are both connected to VCC (set to 1)

• The D flip flop clock has a rising edge CLK input. For example Q0 behaves as follows

• The D input value just before the CLK rising edge is noted (Q00).

• When CLK rising edge occurs, Q0 is assigned the previously noted D value

(Q00).

• Thus, whenever a rising edge appears at the CLK of the D flip flop, the output

Q changes state (or toggles).

• The MOD or number of unique states of this 2 flip flop ripple counter is 4 (22).

• Simulate and Breadboard the Ripple Counter circuit.

• A Truncated Ripple Counter is used if a MOD of less than 2n is required. For example, if

 you want to change the sequence from 3,2,1,0,3,2,1,0 ... to 3,2,0,3,2,0 ...

BCD Ripple Counter

• A decimal counter follows a sequence of 10 states and returns to 0 after the count of 9. Such a

counter must have at least four flip‐flops to represent each decimal digit, since a decimal digit is

represented by a binary code with at least four bits.

• The sequence of states in a decimal counter is dictated by the binary code used to represent a

decimal digit. If BCD is used, the sequence of states is as shown in the state diagram of Fig14. A

decimal counter is similar to a binary counter, except that the state after 1001 (the code for

decimal digit 9) is 0000 (the code for decimal digit 0).

Fig.14 State Diagram of BCD counter

• The logic diagram of a BCD ripple counter using JK flip‐flops is shown in Fig.15, the four

outputs are designated by the letter symbol Q, with a numeric subscript equal to the binary

weight of the corresponding bit in the BCD code.

• Note that the output of Q1 is applied to the C inputs of both Q2 and Q8 and the output of Q2 is

applied to the C input of Q4. The J and K inputs are connected either to a permanent 1 signal or

to outputs of other flip‐flops.

• A ripple counter is an asynchronous sequential circuit. Signals that affect the flip‐flop transition

depend on the way they change from 1 to 0. The operation of the counter can be explained by a

list of conditions for flip‐flop transitions. These conditions are derived from the logic diagram

and from knowledge of how a JK flip‐flop operates.

• Remember that when the C input goes from 1 to 0, the flip‐flop is set if J = 1, is cleared if K = 1,

is complemented if J = K = 1, and is left unchanged if J = K = 0.

Fig.15 BCD counter

SYNCHRONOUS COUNTERS

• Synchronous counters are different from ripple counters in that clock pulses are applied to the

inputs of all flip‐flops. A common clock triggers all flip‐flops simultaneously, rather than one at

a time in succession as in a ripple counter.

• The decision whether a flip‐flop is to be complemented is determined from the values of the data

inputs, such as T or J and K at the time of the clock edge. If T = 0 or J = K = 0, the flip‐flop does

not change state. If T = 1 or J = K = 1, the flip‐flop complements.

Binary Counter

• The design of a synchronous binary counter is so simple that there is no need to go through a

sequential logic design process. In a synchronous binary counter, the flip‐flop in the least

significant position is complemented with every pulse.

• A flip-flop in any other position is complemented when all the bits in the lower significant

positions are equal to 1. For example, if the present state of a four‐bit counter is A3A2A1A0 =

0011, the next count is 0100. A0 is always complemented.

• A1 is complemented because the present state of A0 = 1. A2 is complemented because the

present state of A1A0 = 11. However, A3 is not complemented, because the present state of

A2A1A0 = 011, which does not give an all‐1’s condition.

• Synchronous binary counters have a regular pattern and can be constructed with complementing

flip‐flops and gates. The regular pattern can be seen from the four‐bit counter depicted in Fig. 16

below.

• The C inputs of all flip‐flops are connected to a common clock. The counter is enabled by Count

Enable. If the enable input is 0, all J and K inputs are equal to 0 and the clock does not change

the state of the counter.

• The first stage, A0, has its J and K equal to 1 if the counter is enabled. The other J and K inputs

are equal to 1 if all previous least significant stages are equal to 1 and the count is enabled.

• The chain of AND gates generates the required logic for the J and K inputs in each stage. The

counter can be extended to any number of stages, with each stage having an additional flip‐flop

and an AND gate that gives an output of 1 if all previous flip‐flop outputs are 1.

Fig.16 Four Bit Synchrounous Binary Counter

Binary Up/Down Counter

• A synchronous countdown binary counter goes through the binary states in reverse order, from

1111 down to 0000 and back to 1111 to repeat the count.

• It is possible to design a countdown counter in the usual manner, but the result is predictable by

inspection of the downward binary count. The bit in the least significant position is

complemented with each pulse.

• A bit in any other position is complemented if all lower significant bits are equal to 0. For

example, the next state after the present state of 0100 is 0011. The least significant bit is always

complemented.

• The second significant bit is complemented because the first bit is 0. The third significant bit is

complemented because the first two bits are equal to 0. But the fourth bit does not change,

because not all lower significant bits are equal to 0.

• A countdown binary counter can be constructed as shown in Fig.17 below, except that the inputs

to the AND gates must come from the complemented outputs, instead of the normal outputs, of

the previous flip‐flops.

• The two operations can be combined in one circuit to form a counter capable of counting either

up or down. The circuit of an up–down binary counter using T flip‐flops is shown in Fig.17 It

has an up control input and a down control input.

• When the up input is 1, the circuit counts up, since the T inputs receive their signals from the

values of the previous normal outputs of the flip‐flops.

• When the down input is 1 and the up input is 0, the circuit counts down, since the complemented

outputs of the previous flip‐flops are applied to the T inputs. When the up and down inputs are

both 0, the circuit does not change state and remains in the same count.

• When the up and down inputs are both 1, the circuit counts up. This set of conditions ensures

that only one operation is performed at any given time. Note that the up input has priority over

the down input.

Fig 17: Four-bit up-down binary counter

Ring Counter

• A ring counter is a Shift Register (a cascade connection of flip-flops) with the output of the last

flip flop connected to the input of the first. It is initialized such that only one of the flip flop

output is 1 while the remainder is 0.

• The 1 bit is circulated so the state repeats every n clock cycles if n flip-flops are used. The

"MOD" or "MODULUS" of a counter is the number of unique states. The MOD of the n flip

flop ring counter is n. It can be implemented using D-type flip-flops (or JK-type flip-flops).

Fig 18: Ring Counter

Notes:

· Enable the flips flops by clicking on the RESET (Green) switch. The RESET switch is a

 on/off switch (similar to a room light switch)

· Click on CLK (Red) switch and observe the changes in the outputs of the flip flops. The

CLK switch is a momentary switch (similar to a door bell switch - normally off).

· The D flip flop clock has a rising edge CLK input. For example Q1 behaves as follows:

-The D input value just before the CLK rising edge is noted (Q0).

-When CLK rising edge occurs, Q1 is assigned the previously noted D value (Q0).

The MOD or number of unique states of this 3 flip flop ring counter is 3.

Johnson Counter

• A Johnson counter is a modified ring counter, where the inverted output from the last flip flop is

connected to the input to the first.

• The register cycles through a sequence of bit-patterns. The MOD of the Johnson counter is 2n if

n flip-flops are used.

• The main advantage of the Johnson counter is that it only needs half the number of flip-flops

compared to the standard ring counter for the same MOD.

• It can be implemented using D-type flip-flops (or JK-type flip-flops).

Fig 19: Johnson Counter

Notes:

• Enable the flips flops by clicking on the RESET (Green) switch. The RESET switch is a

on/off switch (similar to a room light switch)

• Click on CLK (Red) switch and observe the changes in the outputs of the flip flops. The

• CLK switch is a momentary switch (similar to a door bell switch - normally off).

o The D flip flop clock has a rising edge CLK input. For example Q1 behaves as

follows:

• The D input value just before the CLK rising edge is noted (Q0).

• When CLK rising edge occurs, Q1 is assigned the previously noted D value (Q0).

The MOD or number of unique states of this 3 flip flop Johnson counter is 6.

REGISTER:

• A clocked sequential circuit consists of a group of flip‐flops and combinational gates. The

flip‐flops are essential because, in their absence, the circuit reduces to a purely combinational

circuit (provided that there is no feedback among the gates).

• A circuit with flip‐flops is considered a sequential circuit even in the absence of combinational

gates. Circuits that include flip‐flops are usually classified by the function they perform rather

than by the name of the sequential circuit. Two such circuits are registers and counters.

• A register is a group of flip‐flops, each one of which shares a common clock and is capable of

storing one bit of information. An n ‐bit register consists of a group of n flip‐flops capable of

storing n bits of binary information.

• In addition to the flip‐flops, a register may have combinational gates that perform certain

data‐processing tasks. In its broadest definition, a register consists of a group of flip‐flops

together with gates that affect their operation.

• The flip‐flops hold the binary information, and the gates determine how the information is

transferred into the register.

• A counter is essentially a register that goes through a predetermined sequence of binary states.

The gates in the counter are connected in such a way as to produce the prescribed sequence of

states.

• Although counters are a special type of register, it is common to differentiate them by giving

them a different name.

• Various types of registers are available commercially. The simplest register is one that consists

of only flip‐flops, without any gates.

• A register constructed with four D ‐type flip‐flops to form a four‐bit data storage register is

shown in figure below.

• The common clock input triggers all flip‐flops on the positive edge of each pulse, and the binary

data available at the four inputs are transferred into the register.

• The value of (I 3 , I 2 , I 1 , I 0) immediately before the clock edge determines the value of (A

3 , A 2 , A 1 , A 0) after the clock edge.

• The four outputs can be sampled at any time to obtain the binary information stored in the

register.

• The input Clear_b goes to the active‐low R (reset) input of all four flip‐flops. When this input

goes to 0, all flip‐flops are reset asynchronously.

• The Clear_b input is useful for clearing the register to all 0’s prior to its clocked operation. The

R inputs must be maintained at logic 1 (i.e., de-asserted) during normal clocked operation.

• Note that, depending on the flip‐flop, either Clear, Clear_b, reset, or reset_b can be used to

indicate the transfer of the register to an all 0’s state.

SHIFT REGISTERS:

• A register capable of shifting the binary information held in each cell to its neighboring cell, in a

selected direction, is called a shift register.

• The logical configuration of a shift register consists of a chain of flip‐flops in cascade, with the

output of one flip‐flop connected to the input of the next flip‐flop.

• All flip‐flops receive common clock pulses, which activate the shift of data from one stage to the

next. The simplest possible shift register is one that uses only flip‐flops, as shown in Fig.20

• The output of a given flip‐flop is connected to the D input of the flip‐flop at its right. This shift

register is unidirectional (left‐to‐right).

• Each clock pulse shifts the contents of the register one bit position to the right. The configuration

does not support a left shift.

• The serial input determines what goes into the leftmost flip‐flop during the shift. The serial

output is taken from the output of the rightmost flip‐flop.

 Fig 20: 4 –Bit Register

Fig 21: Four bit Shift register

• Sometimes it is necessary to control the shift so that it occurs only with certain pulses, but not

with others. As with the data register discussed in the previous section, the clock’s signal can be

suppressed by gating the clock signal to prevent the register from shifting.

• A preferred alternative in high speed circuits is to suppress the clock action, rather than gate the

clock signal, by leaving the clock path unchanged, but recirculating the output of each register

cell back through a two‐channel mux whose output is connected to the input of the cell.

• When the clock action is not suppressed, the other channel of the mux provides a data path to the

cell.

• Shift registers have found considerable application in arithmatic operations. Since, moving a

binary number one bit to the left is equivalent to multiplying the number by 2 and moving the

number one bit position to the right amounts to dividing the number by 2.

• Thus, multiplications and divisions can be accomplished by shifting data bits. Shift registers

find considerable application in generating a sequence of control pulses.

Fig 22: Data Transmission in Shift Register

Bidirectional Shift Registers

The registers discussed so far involved only right shift operations. Each right shift operation has the

effect of successively dividing the binary number by two.

• If the operation is reversed (left shift), this has the effect of multiplying the number by two. With

suitable gating arrangement a serial shift register can perform both operations.

 A bi-directional, or reversible shift register is one in which the data can be shift either left or right.

A four-bit bi-directional shift register using D-flip-flops is shown in Fig 23.

Here a set of NAND gates are configured as OR gates to select data inputs from the right or left

adjacent bistables, as selected by the LEFT_/RIGHT control line.

Fig 23: 4 Bit Bidirectional Shift Register

Universal Shift Register:

A Universal Shift register can shift the data directional along with the parallel load operation. The

following are the functions done by a Universal Shift register.

• A clear control to clear the register to 0.

• A CP input for clock pulse to synchronize all operations

• A shift-right control to enable the shift-right operation and the serial input and output lines

associated with the shift right.

• A shift-left control to enable the shift-left operation and the serial input and output lines

associated with the shift left.

• A parallel-load control to enable a parallel transfer and n input lines associated with the

parallel transfer.

• N parallel output lines.

• A control state that leaves the information in the register unchanged even though clock

pulses are continuously applied.

Fig 24: 4- Bit Universal Shift Register

• The Universal Shift Register that is shown in Fig. 24 has all the capabilities that are listed above.

It consists f four D-flip-flops and four multiplexers which has two selection lines. The S1 and S0

inputs control the mode of operation of the register which is specified in Table.1

•

• When S1 S0=00, the present value of the register is applied to the D-inputs of the flip-flops

which forms a path from output of each flip-flop into the input of the same flip-flop. So no

change of state occurs.

• When S1 S0=01, terminal 1 of the multiplexer inputs have a path to the D inputs of the flip-flops

which causes a shift-right operation.

• When S1 S0=10, a shift-left operation results, with the other serial input going into flip-flop A1.

• Finally, when S1 S0=11, the binary information on the parallel input lines is transferred into the

register simultaneously during next clock pulse.

Table.1: Functional Table for Universal Shift Register

Mode Control

Register Operation S1 S0

0 0 No change

0 1 Shift right

1 0 Shift left

1 1 Parallel Load

APPLICATIONS OF SHIFT REGISTERS

Shift registers can be found in many applications. Here is a list of a few.

• To Produce Time Delay

• To Simplify Combinational Logic

• To Convert Serial Data to Parallel Data

Assignment-Cum-Tutorial Questions

Section-A

1. A sequential logic circuit

 A) Must contain flip-flops B) may contain flip-flops

 C) does not contain flip-flops D) contain latches

2. A sequential circuit does not use clock pulses. It is

 A) an asynchronous sequential circuit

 B) a synchronous sequential circuit

 C) a counter D) a shift register

3. A flip-flop can store

 A) one bit of data B) two bits of data

 C) tree bits of data D) any number of bits of data

4. The characteristic equation of a J-K flip-flop is_____.
5. The characteristic equation of a D flip-flop is_____.
6. The transparent flip-flop is

 A) an S-R flip-flop B) a D flip-flop

 C) a T flip-flop D) a J-K flip flop

7. A universal register

 A) accepts serial input B) accepts parallel input

 C) gives serial and parallel D) is cable of all of the above

8. The output Qn of a J-K flip-flop is 1. It changes to 0 when a clock pulse is

applied. Then the inputs Jn and Kn are respectively

 A) 0 and X B) 1 and X C) X and 1 D) 0 and X

9. The output Qn of a S-R flip-flop is 0.It changes to 1 when a clock pulse is

applied. Then the inputs Sn and Rn are respectively

 A) X and 1 B) 0 and 1 C) X and 0 D) X and 1

10. A 4-bit binary ripple counter uses flip-flops with propagation delay time of

25ns each. The maximum possible time required for change of state will be

 A) 25ns B) 50ns C) 75ns D) 100ns

11. A mod-2 counter followed by a mod-5 counter is

 A) the same as a mod-5 counter followed by a mod-2 counter

 B) a decade counter C) a mod-7 counter D) none of above

12. A sequential circuit with ten states will have

 A) 10 flip-flops B) 5 flop-flops C) 4 flip-flops D) 0 flip-flops

13. The minimum number of flop-flops required for a mod-12 ripple counter is

 A) 3 B) 4 C) 6 D) 12

Section-B

1. Distinguish between combinational and sequential circuits.

2. Find the characteristic equation for JK flip-flop.

3. Convert a J-K flip-flop into T flip-flop

4. Convert an SR flip-flop into JK flip-flop

5. What is a universal shift register and explain it’s working.

6. Write the Excitation tables of D, T, SR, JK Flip Flops

7. What are shift register counters? Draw Ring Counter and explain the

operation with Truth Table.

8. Design a 3 bit synchronous up/down counter using JK flip-flop.

9. Design a mod 7 asynchronous counter using JK flip-flop.

10. Design a mod 12 synchronous counter using T flip-flop.

Section-C

1. A synchronous counter counts the sequence 0-1-0-2-0-3 and then repeats.

The minimum number of J-K flip-flops required to implement this counter is

GATE-2016

A) 1 B) 2 C) 4 D) 5

2. A positive edge-triggered D flip-flop is connected to a positive edge-triggered

JK flip flop as follows. The Q output of the D flip-flop is connected to both the

J and K inputs of the JK flip-flop, while the Q output of the JK flip-flop is

connected to the input of the D flip-flop. Initially, the output of the D flip-flop

is set to logic one and the output of the JK flip-flop is cleared. Which one of

the following is the bit sequence (including the initial state) generated at the

Q output of the JK flip-flop when the flip-flops are connected to a free-

running common clock? Assume that J = K = 1 is the toggle mode and J = K

= 0 is the state-holding mode of the JK flip-flop. Both the flip-flops have non-

zero propagation delays. GATE-2015

A) 0110110… B) 0100100…

C) 011101110… D) 011001100…

3. The outputs of the two flip-flops Q1, Q2 in the figure shown are initialized to 0,

0. The sequence generated at Q1 upon application of clock signal is

 GATE-2014

A) 01110… B)01010…

C) 00110… D) 01100…

4. The circuit shown in the figure is a GATE-2014

A) Toggle flip-flop B) JK flip-flop

C) SR flip-flop D) Master-Slave D flip-flop

5. When the output Y in the circuit below is ‘1’. It implies that data has

GATE-2011

A) Changed from ‘0’ to ‘1’

B) Changed from ‘1’ to ‘0’

C) Changed in either direction D) Not changed

6. Assuming that the all flip-flops are in reset condition initially, the count

sequence observed at QA in the circuit shown is

A) 0010111…. B) 0001011…. GATE-2010

C) 0101111…. D) 0110100….

7. For the circuit shown, the counter state (Q1Q0) follows the sequences

A) 00,01,10,11,00,…… GATE-2007

B) 00,01,10,00,01,……

C) 00,01,11,00,01,……

D) 00,10,11,00,10,……

8. Two D flip-flops are to be connected as a synchronous counter as shown

below, that goes through the following Q1 Q0 sequence

00→01→11→10→00→……………

The inputs D0 and D1 respectively should be connected as GATE-2006

 A) and Q0 B) and Q1

 C) Q0and Q0 D) Q0and Q1 Q0

9. The present output Qn of an edge triggered JK-Flip Flop is logic ‘0’. If

J=1,then Qn+1 is GATE-2005

A) Can’t determined

B) Will be logic ‘1’

C) Will be logic ‘0’

D) Will race around

10. Consider the given circuit. In the circuit race around condition will

A) Does not occur GATE-2005

B) Occur when CLK=0

C) Occur when CLK=1 and A=B=1

D) Occur when CLK=1 and A=B=0

11. A Master-Slave flip-flop has the characteristic that GATE-2004

A) Change in the input immediately reflected in the output.

B) Change in the output occurs when the state of the master is affected.

C) Change in the output occurs when the state of the slave is affected.

D) Both the master and slave states are affected at the same time.

12. The ripple counter shown in the given figure is works as a

A) Mod-3 up counter

B) Mod-5 up counter

C) Mod-3 down counter

D) Mod-5 down counter

13. In the figure shown is A=1 and B=1, the input B is now replaced with a

sequence 101010…., the output X

and Y will be IES-2005

A) Fixed at 0 and 1 respectively B) X=1010…. While Y=0101…

C) X=1010…. and Y=1010…. D) Fixed at 1 and 0 respectively

14. A Master Slave flip flop has the characteristic that IES-2001

A) Change in input immediately reflected in the output

B) Change in the output occurs when the state of the Master is affected

C) Change in the output occurs when the state of the Slaver is affected

D) Both the master and the slave states are affected at the same time

UNIT – IV

 Finite State Machines

Objectives:

• To familiarize with the concepts of Finite state machines.

Syllabus:

Types of FSM, Capabilities and limitations of FSM, State assignment, Realization of FSM

using flip-flops, Mealy to Moore conversion and vice-versa, Reduction of state tables using

partition technique

Outcomes:

Students will be able to

• design FSM charts using flip flops.

• understand the melay machines and moore machines.

• Reduction methods of state tables.

• partition technique.

Model Of A Finite State Machine (FSM)
 It is a Finite State Machine (FSM) also called Finite Automation in the literature pertaining to

automata theory. FSM comprises an input set (I), output set (Z),a set of states (S), state transition

function (𝛿), and output function (λ). Thus, the finite state machine M is a quintuple given by M =

(I,Z,S, 𝛿, λ),where 𝛿 is a function of present state resulting in the next state and λ is a function

which enables us to compute the output depending on the present inputs and present state.The

previous statement refers to what is generally called the Mealy Machines.

The clock pulses control all timing in the machine . If the clock is removed, the model represents an

asynchronous sequential machine with mere delays replacing flip-flops.

Limitations Of Finite State Machines

• No finite state machine can be produced for an infinite sequence.

• No finite state machine can multiply two arbitrary large binary numbers.

No finite state machine can be designed to produce such a non-periodic infinite sequence for a

periodic input.

Mealy And Moore Models

 A sequential machine M is a quintuple comprising a set of inputs I,a set of outputs Z, a set of

states S, a transition function 𝛿 which enables finding the next state depending on the present

state and present input and finally an output function λ.This is symbolically expressed as

M=(I,Z,S, 𝛿, λ).

If the output function depends on the present state and present inputs,it is called the Mealy

model,named after G.H.Mealy, a pioneer in the field. If the output is associated only with the

present state,it is called the Moore model, named after another pioneer E.F.Moore.The counters

are clearly Moore machines as the output depends only on the states of the flip-flops.Likewise,

a sequence detector is also a Moore machine.Serial adder is an example of a Mealy machine as

each one of its states is reached producing a 0 or 1 output depending on the starting state and

the value of the inputs.

Mealy To Moore Conversion

Let us learn how to convert a Mealy machine into a Moore machine .The state diagram and the

state table of the synchronous serial adder are given below.Notice that the state P is reached from

the state Q on the application of the inputs AB=00 and ,in the process, the machine produces an

output Z=1 indicated on the arc as 00/1.Also notice that the machine produces Z=0 in another

transition to P.This transition is indicated as a self loop around P on inputs AB=00/0.For AB=01 or

10 while in P, the machine produces an output 1 and remains in the same state P.

The two important observations are

1.If the Mealy machine has K states, the equivalent Moore machine will have at most 2K states if

the output is a binary variable.

2.There is no power-on state,unless specifically defined.A special state may be introduced if the

user wants one.

Moore To Mealy Conversion

 It is amazingly simple to convert a Moore to Mealy machine.Let some state si given Moore

machine be associated with an output Zi.What we need to do is simply associate the output Zi

where Si occurs as the next state by scanning all the input columns.All states of Moore machine are

Z homogeneous.

Reduction Of State Tables Using Partition Technique:

 Clearly, the 0 partition P0 contains all the states of the machine in one group indicated by

brackets, because by applying 0 inputs, that is ,no inputs at all, it is not possible to distinguish

between the states.If you apply any one input, either x=0 or x=1, observe that the outputs ,A,B,F

cause the corresponding output pattern to be 00 while the states C,D,E cause the outputs to be 01 in

the two input columns of the corresponding rows. Thus, by merely observing the outputs , we may

form the 1-partition P1 as (ABF),(CDE).

If each successor pair is within one bracket , we retain the pair intact; otherwise we split the pair.

Suppose in P2 ,we consider the transition from pair AB in the x=0 column and x=1 column. This

means that “equivalence of A and B implies equivalence of A and B”- a strange partition which is

to be ignored.

 Continuing the process, we find that neither C and E nor D and E can be equivalent. Hence E

parts company from CD in the next partition P3 .Continuing further , we find that P4 is identical to

P3 and hence we stop here and conclude that no experiment exists to distinguish between the states

AB and CD. Hence we taken them as equivalence classes.

Derivation Of Flip-Flop Input Equations

 After the number of states in a state table has been reduced, the following procedure can be

used to derive the flip-flop input equations:

1. Assign flip-flop state values to correspond to the states in the reduced table.

2. Construct a transition table which gives the next states of the flip-flops as a function of the

present states and inputs.

3. Derive the next state maps from the transition table.

 We could make a straight binary state assignment for which S0 is represented by flip-flops

states ABC=000, S1 by ABC =001, S2 by ABC=010, etc. However because the correspondence

between flip-flops states and the state names is arbitrary , we could use many different state

assignments. Using a different assignment may lead to simpler or more complex flip-flops input

equations.

 S0=000, S1=110, S2=001 , S3=111, S4=011, S5=101, S6=010

For XABC=0000 the next state entry is 110, so we fill in A+ =1 , B+ =1, C+=0.The below figure

shows the D flipflop input equations can be derived directly from the next state maps because

DA=A+ , DB=B+, DC=C+. If J-K flip-flops are used, the J and K input equations can be derived

from the next state maps as shown below.

 A sequential circuit with two inputs (X1 and X2) and two outputs (Z1 and Z2).Note that the

column headings are listed in Karnaugh map order because this will facilitate derivation of the flip-

flops input equations. Because the table has four states, two flip-flops (A and B) are required to

realize the table.

If J-K, T, or S-R flip-flops are used, the flip-flops input maps can be derived from the next state

maps.

Equivalent State Assignments

 After the number of states in a state table has been reduced, the next step in realizing the table

is to assign flip-flop states to correspond to the states in the table. The trail-and-error method

described next is useful for only a small number of states. If the number of states is small, it may be

feasible to try all possible state assignments, evaluate the cost of the realization for each assignment,

and choose the assignment with low cost.

 If symmetrical flip-flops such as T, J-K, S-R are used, complementing one or more columns of

the state assignment will have no effect on the cost of realization. Consider a J-K flip-flip imbedded

in a circuit. Leave the circuit unchanged and interchange the J and K input connections.

If unsymmetrical flip-flops are used such as D flip-flop , it is still true that permuting columns in

the state assignment will not affect the cost; however complementing a column may require adding

an inverter to the circuit .

If different types of gates are available the circuit can generally be redesigned to eliminate the

inverter and use the same number of gates as the original.

 The J-K and D flip-flops input equations for the three assignments can be derived using

Karnaugh maps.

 We will say that two state assignments are equivalent if one can be derived from the other

by permuting and complementing columns.Two state assignments which are not equivalent are said

to be distinct. Hand solution is feasible for two, three,or four states ; computer solution is feasible

for five through eight states; but more than nine states it is not practically to try all assignments

even if high-speed computer is used.

IMPORTANT TERMS:

Terminal state:

 A terminal state is a state with no incoming arcs which start from other states and

terminate on it.

Strongly connected machine:

 A sequential machine M is said to be strongly connected, if for every pair of states si, sj

of the sequential machine,there exists an input sequence which takes the machine M from si

to sj.

Redundant states:

 Redundant states are states whose functions can be accomplished by other states.

Equivalent states:

 Two states are said to be equivalent if for every possible set of inputs they generate

exactly the same output and the same next state.

When equivalent states are there, one of them can be retained and all others can be removed

without altering the input-output relationship because they are redundant. This results in

reduction of states which in turn reduces the number of required flip-flops and logic gates

reducing the cost of final circuit.

Unit – V

Programmable Logic Devices & HDL

Objectives:

• To familiarize with the concepts of Programmable Logic Devices (PLDs):

PROM, PAL, PLA, CPLDs, FPGAs, etc.

• How to implement various logic circuits using PLDs.

• To explore about Verilog HDL models.

Syllabus:

Types of PLD’s- PROM, PAL, PLA, Basic structure of CPLD and FPGA, Advantages

of FPGA’s, Introduction to Verilog - structural Specification of logic circuits,

Behavioral specification of logic circuits, Hierarchical Verilog Code.

Outcomes:

Students will be able to

• draw the basic structures of PLDs.

• realize various logic functions using PLDs.

• explain various models in verilog HDL.

Learning Material

5.1 Programmable Logic Devices (PLDs)

Introduction:

An IC that contains large numbers of gates, flip-flops, etc. that can be configured by the user

to perform different functions is called a Programmable Logic Device (PLD). The internal

logic gates and/or connections of PLDs can be changed/configured by a programming

process. One of the simplest programming technologies is to use fuses. In the original state of

the device, all the fuses are intact. Programming the device involves blowing those

fuses along the paths that must be removed in order to obtain the particular configuration of

the desired logic function. PLDs are typically built with an array of AND gates (AND-array)

and an array of OR gates (OR-array) is shown in figure 5.1.

Fig 5.1 Basic PLD structure

Advantages of PLDs:

Problems of using standard ICs:

Problems of using standard ICs in logic design are that they require hundreds or thousands of

these ICs, considerable amount of circuit board space, a great deal of time and cost

in inserting, soldering, and testing. Also require keeping a significant inventory of ICs.

Advantages of using PLDs:

Advantages of using PLDs are less board space, faster, lower power requirements (i.e.,

smaller power supplies), less costly assembly processes, higher reliability (fewer ICs

and circuit connections means easier troubleshooting), and availability of design software.

Types of PLDs:

There are three fundamental types of standard PLDs: PROM, PAL, and PLA. A fourth type of

PLD is the Complex Programmable Logic Device (CPLD) and next one is Field

Programmable Gate Array (FPGA). A typical PLD may have hundreds to millions of gates.

In order to show the internal logic diagram for such technologies in a concise form, it is

necessary to have special symbols for array logic. Figure 5.2 shows the conventional and array

logic symbols for a multiple input AND and a multiple input OR gate.

Fig 5.2 Symbol for both conventional and array

Three Fundamental Types of PLDs:

The three fundamental types of PLDs differ in the placement of programmable connections in

the AND-OR arrays. Figure 5.3 shows the locations of the programmable connections for the

three types.

The PROM (Programmable Read Only Memory) has a fixed AND array (constructed as a

decoder) and programmable connections for the output OR gates array. The

PROM implements Boolean functions in sum-of-minterms form.

The PAL (Programmable Array Logic) device has a programmable AND array and

fixed connections for the OR array.

The PLA (Programmable Logic Array) has programmable connections for both AND and

OR arrays. So it is the most flexible type of PLD.

Fig 5.3 General structure notations for various types of PLDs

The ROM (Read Only Memory) or PROM (Programmable Read Only Memory):

The input lines to the AND array are hard-wired and the output lines to the OR array

are programmable. Each AND gate generates one of the possible AND products (i.e.,

minterms). implement the following Boolean functions using PROM.

Example:

A(X,Y,Z)=∑m(5,6,7), B(X,Y,Z)=∑m(3,5,6,7)

The given two functions are in sum of min terms form and each function is having

three variables X, Y & Z. So, it requires a 3 to 8 decoder and two programmable OR

gates for producing these two functions. The corresponding PROM is shown in the following

figure 5.4.

Fig 5.4 PROM design for given example

Here, 3 to 8 decoder generates eight min terms. The two programmable OR gates have

the access of all these min terms. But, only the required min terms are programmed in

order to produce the respective Boolean functions by each OR gate. The symbol ‘X’ is

used for programmable connections.

The PLA (Programmable Logic Array):

In PLAs, instead of using a decoder as in PROMs, a number (k) of AND gates is used where

k < 2n, (n is the number of inputs). Each of the AND gates can be programmed to generate a

product term of the input variables and does not generate all the minterms as in the ROM. The

AND and OR gates inside the PLA are initially fabricated with the links (fuses) among them.

The specific Boolean functions are implemented in sum of products form by opening

appropriate links and leaving the desired connections. A block diagram of the PLA is shown

in the figure 5.5. It consists of n inputs, m outputs, and k product terms.

Fig 5.5 Block diagram for PLA

The product terms constitute a group of k AND gates each of 2n inputs. Links are

inserted between all n inputs and their complement values to each of the AND gates.

Links are also

provided between the outputs of the AND gates and the inputs of the OR gates. Since PLA has m-

outputs, the number of OR gates is m. The output of each OR gate goes to an XOR

gate, where the other input has two sets of links, one connected to logic 0 and other to

logic 1. It allows the output function to be generated either in the true form or in the

complement form. The output is inverted when the XOR input is connected to 1 (since X ⊕ 1 =

X/). The output does

not change when the XOR input is connected to 0 (since X ⊕ 0 = X). Thus, the total number of

programmable links is 2n x k + k x m + 2m. The size of the PLA is specified by the number of

inputs (n), the number of product terms (k), and the number of outputs (m), (the number of sum

terms is equal to the number of outputs).

Example:

Implement the combinational circuit having the shown truth table, using PLA.

Each product term in the expression requires an AND gate. To minimize the cost, it

is necessary to simplify the function to a minimum number of product terms.

Designing using a PLA, a careful investigation must be taken in order to reduce the distinct

product terms. Both the true and complement forms of each function should be simplified to

see which one can be expressed with fewer product terms and which one provides product

terms that are common to other functions. The combination that gives a minimum number of

product terms is:

F1
’ = AB + AC + BC or F1 = (AB + AC + BC)’

F2 = AB + AC + A’B’C’

This gives only 4 distinct product terms: AB, AC, BC, and A’B’C’.

So the PLA table will be as follows:

For each product term, the inputs are marked with 1, 0, or – (dash). If a variable in

the product term appears in its normal form (unprimed), the corresponding input

variable is marked with a 1. A 1 in the Inputs column specifies a path from the

corresponding input to the input of the AND gate that forms the product term. A 0 in the

Inputs column specifies a path from the corresponding complemented input to the input

of the AND gate. A dash specifies no connection. The appropriate fuses are blown and

the ones left intact form the desired paths. It is assumed that the open terminals in the

AND gate behave like a 1 input. In the outputs column, a T (true) specifies that the other

input of the corresponding XOR gate can be connected to 0, and a C (complement) specifies

a connection to 1. Note that output F1 is the normal (or true) output even though a C (for

complement) is marked over it. This is because F1’ is generated with AND-OR circuit prior

to the output XOR. The output XOR complements the function F1’ to produce the true F1

output as its second input is connected to logic 1 is shown in figure 5.6.

Fig 5.6 PLA realization for given example

The PAL (Programmable Array Logic):

The PAL device is a PLD with a fixed OR array and a programmable AND array. As only AND

gates are programmable, the PAL device is easier to program but it is not as flexible as the PLA.

Fig 5.7 4 inputs and 4 outputs PAL Example

The device shown in the figure 5.7 has 4 inputs and 4 outputs. Each input has a

buffer- inverter gate, and each output is generated by a fixed OR gate. The device has 4

sections, each composed of a 3-wide AND-OR array, meaning that there are 3 programmable

AND gates in each section. Each AND gate has 10 programmable input connections

indicating by

10 vertical lines intersecting each horizontal line. The horizontal line symbolizes the multiple

input configuration of an AND gate. One of the outputs F1 is connected to a buffer-inverter

gate and is fed back into the inputs of the AND gates through programmed

connections. Designing using a PAL device, the Boolean functions must be simplified

to fit into each section. The number of product terms in each section is fixed and if the

number of terms in the function is too large, it may be necessary to use two or more sections

to implement one Boolean function.

Example:

Implement the following Boolean functions using the PAL device as shown above:

W(A, B, C, D) = ∑m(2, 12, 13)

X(A, B, C, D) = ∑m(7, 8, 9, 10, 11, 12, 13, 14, 15)

Y(A, B, C, D) = ∑m(0, 2, 3, 4, 5, 6, 7, 8, 10, 11, 15)

Z(A, B, C, D) = ∑m(1, 2, 8, 12, 13)

Simplifying the 4 functions to a minimum number of terms results in the following

Boolean functions:

W = ABC’ + A’B’CD’

X = A + BCD

Y = A’B + CD + B’D’

Z = ABC’ + A’B’CD + AC’D’ + A’B’C’D

=W +AC’D’ + A’B’C’D

Note that the function for Z has four product terms. The logical sum of two of these terms is

equal to W. Thus, by using W, it is possible to reduce the number of terms for Z from four to

three, so that the function can fit into the given PAL device. The PAL programming table is

similar to the table used for the PLA, except that only the inputs of the AND gates need to be

programmed.

Fig 5.8 4 inputs and 4 outputs PAL Example with three AND gates

The figure 5.8 shows the connection map for the PAL device, as specified in

the programming table. Since both W and X have two product terms, third AND gate is not

used. If all the inputs to this AND gate left intact, then its output will always be 0,

because it receives both the true and complement of each input variable i.e., AA’ =0

Comparison between PROM, PLA and PAL

PROM PLA PAL

AND array is fixed and OR

array is programmable.

Both AND and OR arrays are

programmable.

OR array is fixed and AND

array is programmable.

Cheaper and simple to use. Costliest and complex than

PAL and PROMs,

Ail minterms are decoded. AND array can

be programmed to get

desired

minterms.

Cheaper and simpler.

AND array can be

programmed to get desired

minterms.

Onfy Boolean functions in

Standard SOP form can

be implemented using

PROM

Any Boolean functions In

SOP form can be implemented

using PLA.

Any Boolean functions In

SOP form can

be implemented using PLA.

Complex Programmable Logic Devices (CPLDs):

With the advancement of technology, it has become possible to produce devices with higher

capacities than SPLD’s. As chip densities increased, it was natural for the PLD manufacturers

to evolve their products into larger (logically, but not necessarily physically) parts

called Complex Programmable Logic Devices (CPLDs). For most practical purposes, CPLDs

can be thought of as multiple PLDs (plus some programmable interconnect) in a single

chip. The larger size of a CPLD allows to implement either more logic equations or a more

complicated design. A CPLD contains a bunch of PLD blocks whose inputs and outputs are

connected together by a global interconnection matrix. Thus a CPLD has two levels of

programmability: each PLD block can be programmed, and then the interconnections between

the PLDs can be programmed. For most practical purposes, CPLDs can be thought of as

multiple PLDs (plus some programmable interconnect) in a single chip. The larger size

of a CPLD allows to implement either more logic equations or a more complicated

design. A CPLD contains a bunch of PLD blocks whose inputs and outputs are

connected together by a global interconnection matrix. Thus a CPLD has two levels of

programmability: each PLD block can be programmed, and then the interconnections

between the PLDs can be programmed.

Fig. 5.9 Internal structure and one section of CPLD

In other words, some of the theoretically possible connections between logic

block outputs and inputs may not actually be supported within a given CPLD. The

effect of this is most often to make 100% utilization of the macrocells very difficult to

achieve. Some hardware designs simply won't fit within a given CPLD, even though

there are sufficient logic gates and flip-flops available. Because CPLDs can hold larger

designs than PLDs, their potential uses are more varied. They are still

sometimes used for simple applications like address decoding, but more often

contain high-performance control-logic or complex finite state machines. At the high-

end (in terms of numbers of gates), there is also a lot of overlap in potential

applications with FPGAs.

Traditionally, CPLDs have been chosen over FPGAs whenever high-performance

logic is required. Because of its less flexible internal architecture, the delay through a

CPLD (measured in nanoseconds) is more predictable and usually shorter.

Field Programmable Gate Arrays (FPGAs):

The development of the FPGA was distinct from the SPLD/CPLD evolution. FPGAs

offer the highest amount of logic density, the most features, and the

highest performance. The largest FPGA now shipping, part of the Xilinx

Virtex™ line of devices, provides eight million "system gates" (the relative

density of logic). These advanced devices also offer features such as built-in

hardwired processors (such as the IBM Power PC), substantial amounts of memory,

clock management systems, and support for many of the latest, very fast device-

to-device signaling technologies. FPGAs are used in a wide variety of applications

ranging from data processing and storage, to instrumentation, telecommunications,

and digital signal processing. The value of programmable logic has always been its

ability to shorten development cycles for electronic equipment manufacturers and

help them get their product to market faster. As PLD (Programmable Logic

Device) suppliers continue to integrate more functions inside their devices,

reduce costs, and increase the availability of time- saving IP cores,

programmable logic is certain to expand its popularity with digital designers. An

FPGA is a device that contains a matrix of reconfigurable gate array logic

circuitry. When a FPGA is configured, the internal circuitry is connected in a

way that creates a hardware implementation of the software application. Unlike

processors, FPGAs use dedicated hardware for processing logic and do not have

an operating system. FPGAs are truly parallel in nature so different processing

operations do not have to compete for the same resources. As a result, the performance

of one part of the application is not affected when additional processing is added.

Also, multiple control loops can run on a single FPGA device at different rates. FPGA-

based control systems can enforce critical interlock logic and can be designed to

prevent I/O forcing by an operator. However, unlike hard-wired printed circuit

board (PCB) designs which have fixed hardware resources, FPGA-based systems

can literally rewire their internal circuitry to allow reconfiguration after the

control system is deployed to the field. FPGA devices deliver the performance

and reliability of dedicated hardware circuitry.

Fig. 5.10 Internal Structure of FPGA

A single FPGA can replace thousands of discrete components by incorporating

millions of logic gates in a single integrated circuit (IC) chip. The internal resources of

an FPGA chip consist of a matrix of configurable logic blocks (CLBs) surrounded by a

periphery of I/O blocks shown in Fig. 5.10. Signals are routed within the FPGA matrix

by programmable interconnect switches and wire routes. In an FPGA logic blocks are

implemented using multiple level low fan-in gates, which gives it a more

compact design compared to an implementation with two-level AND-OR logic. FPGA

provides its user a way to configure:

1. The intersection between the logic blocks and

2. The function of each logic block.

Logic block of an FPGA can be configured in such a way that it can provide

functionality as simple as that of transistor or as complex as that of a microprocessor. It

can used to implement different combinations of combinational and sequential logic

functions. Logic blocks of an FPGA can be implemented by any of the following:

1. Transistor pairs

2. combinational gates like basic NAND gates or XOR gates

3. n-input Lookup tables; two input LUT is shown in figure 5.11.

4. Multiplexers

5. Wide fan-in And-OR structure.

Fig. 5.11 A Two input LUT

The FPGA consists of three main structures: 1) Programmable logic structure,

2) Programmable routing structure, and 3) Programmable Input/Output (I/O).

1.Programmable logic structure

The programmable logic structure FPGA consists of a 2-dimensional array of

configurable logic blocks (CLBs). Each CLB can be configured (programmed) to

implement any Boolean function of its input variables. Typically CLBs have between 4-6

input variables. Functions of larger number of variables are implemented using

more than one CLB. In addition, each CLB typically contains 1 or 2 FFs

to allow implementation of sequential logic. Large designs are partitioned and

mapped to a number of CLBs with each CLB configured (programmed) to perform

a particular function. These CLBs are then connected together to fully implement the

target design. Connecting the CLBs is done using the FPGA programmable routing

structure.

2. Programmable routing structure

To allow for flexible interconnection of CLBs, FPGAs have 3 programmable

routing resources: Vertical and horizontal routing channels which consist of

different length wires that can be connected together if needed. These channel run

vertically and horizontally between columns and rows of CLBs as shown in

the figure 5.12 (a). Connection boxes, which are a set of programmable links that

can connect input and output pins of the CLBs to wires of the vertical or the

horizontal routing channels. Switch boxes, located at the intersection of the

vertical and

horizontal channels. These are a set of programmable links that can connect wire

segments in the horizontal and vertical channels.

3. Programmable I/O

Fig. 5.12 (a) Programmable routing structure

These are mainly buffers that can be configured either as input buffers, output

buffers or input/output buffers. They allow the pins of the FPGA chip to

function either as input pins, output pins or input/output pins. programmable I/O

block is shown in figure 5.12 (b).

Fig. 5.12 (b) Programmable I/O block

Advantages of FPGA’s:
• Short Development time

• Reconfigurable

• Saves board space

• Flexible to changes

• No need for ASIC expensive design and production

• Fast time to market

• Bugs can be fixed easily

• Of the shelf solutions are available

INTRODUCTION TO VERILOG

In the 1980s rapid advances in integrated circuit technology lead to efforts to develop

standard design practices for digital circuits. Verilog was produced as a part of

that effort. The original version of Verilog was developed by Gateway Design

Automation, which was later acquired by Cadence Design Systems. In 1990 Verilog

was put into the public domain, and it has since become one of the most

popular languages for describing digital circuits. In 1995 Verilog was adopted as an

official IEEE Standard, called 1364-1995. An enhanced version of Verilog, called

Verilog 2001, was adopted as IEEE Standard 1364-2001 in 2001. While this version

introduced a number of new features, it also supports all of the features in the original

Verilog standard. Verilog was originally intended for simulation and verification

of digital circuits. Sub- sequently, with the addition of synthesis capability, Verilog

has also become popular for use in design entry in CAD systems. The CAD tools

are used to synthesize the Verilog code into a hardware implementation of the

described circuit. In this book our main use of Verilog will be for synthesis.

Verilog is a complex, sophisticated language. Learning all of its features is a

daunting task. However, for use in synthesis only a subset of these features is

important.

Fig 5.13 A Typical CAD system

Verilog is introduced in several stages throughout the book. Our general approach will

be to introduce particular features only when they are relevant to the design

topics covered in that part of the text. In Appendix A we provide a concise summary of

the Verilog features covered in the book. The reader will find it convenient to refer to

that material from time to time. In the remainder of this chapter we discuss the most

basic concepts needed to write simple Verilog code. A typical CAD system is

given in figure 5.13.

Representation of Digital Circuits in Verilog

When using CAD tools to synthesize a logic circuit, the designer can provide

the initial description of the circuit in several different ways, as we explained in

the previous section. One efficient way is to write this description in the form of

Verilog source code. The Verilog compiler translates this code into a logic

circuit. Verilog allows the designer to describe a desired circuit in a number of ways.

One possibility is to use Verilog constructs that describe the structure of the circuit in

terms of circuit elements, such as logic gates. A larger circuit is defined by writing

code that connects such elements together. This approach is referred to as the

structural representation of logic circuits. Another possibility is to describe a

circuit more abstractly, by using logic expressions and Verilog programming

constructs that define the desired behavior of the circuit, but not its actual structure in

terms of gates. This is called the behavioral representation.

STRUCTURAL SPECIFICATION OF LOGIC CIRCUITS

Verilog includes a set of gate-level primitives that correspond to commonly-used logic

gates. A gate is represented by indicating its functional name, output, and inputs. For

example, a two-input AND gate, with output y and inputs x1 and x2, is denoted as

and (y, x1, x2);

A four-input OR gate is specified as

or (y, x1, x2, x3, x4);

The keywords nand and nor are used to define the NAND and NOR gates in the same

way. The NOT gate given by not (y, x);

implements y = x. The gate-level primitives can be used to specify larger circuits..

A logic circuit is specified in the form of a module that contains the statements that

define the circuit. A module has inputs and outputs, which are referred to as its ports.

The word port is a commonly-used term that refers to an input or output connection to

an electronic circuit. Consider the multiplexer circuit from Figure 5.14. This

circuit

can be represented by the Verilog code in Figure 5.14. The first statement gives the

module a name, example1, and indicates that there are four port signals. The next two

statements declare that x1, x2, and s are to be treated as input signals,

Fig 5.14 A logic circuit for multiplexer

module example1 (x1, x2, s, f);

input x1, x2, s;

output f;

not (k, s);

and (g, k, x1);

and (h, s, x2);

or (f, g, h);

endmodule
Verilog code for the circuit in Figure 5.14.

while f is the output. The actual structure of the circuit is specified in

the four statements that follow. The NOT gate gives k = s. The AND

gates produce g = sx1 and h = sx2. The outputs of AND gates

are combined in the OR gate to form

f= g + h

= sx1 + sx2

The module ends with the endmodule statement.

A second example of Verilog code is given in Figure 5.15. It defines a

circuit that has four input signals, x1, x2, x3, and x4, and three

output signals, f, g, and h. It implements the logic functions

g= x1x3 + x2x4

h= (x1 + x3)(x2 + x4)

f= g + h

module example2 (x1, x2, x3, x4, f, g, h);

input x1, x2, x3, x4;

output f, g, h;

and (z1, x1, x3);

and (z2, x2, x4);

or (g, z1, z2);

or (z3, x1, x3);

or (z4, x2, x4);

and (h, z3, z4);

or (f, g, h);

endmodule

Figure 5.15 Verilog code for a four-input circuit.

Instead of using explicit NOT gates to define x2 and x3, we have used the

Verilog operator “∼” (tilde character on the keyboard) to denote complementation.

Thus, x2 is indicated as ∼x2 in the code.

Verilog Syntax

The names of modules and signals in Verilog code follow two simple rules: the name

must start with a letter, and it can contain any letter or number plus the “_” underscore

and “$” characters. Verilog is case sensitive. Thus, the name k is not the same as K and

Example1 is not the same as example1. The Verilog syntax does not enforce a

particular style of code. For example, multiple statements can appear on a single line.

White space characters, such as SPACE and TAB, and blank lines are ignored. As a

matter of good style, code should be formatted in such a way that it is easy to read.

BEHAVIORAL SPECIFICATION OF LOGIC CIRCUITS

Using gate-level primitives can be tedious when large circuits have to be designed. An

alternative is to use more abstract expressions and programming constructs to describe

the behavior of a logic circuit. One possibility is to define the circuit using

logic expressions. Figure 5.16 shows how the circuit in Figure 5.15 can be defined

with the expression f = sx1 + sx2

The AND and OR operations are indicated by the “&” and “|” Verilog

operators, respectively. The assign keyword provides a continuous assignment for the

signal f . The word continuous

Fig 5.16. A logic circuit for the code given in fig 5.15

module example3 (x1, x2, s, f);

input x1, x2, s;

output f;

assign f = (s & x1) | (s & x2);

endmodule

Figure 5.17 Using the continuous assignment

stems from the use of Verilog for simulation; whenever any signal on

the right-hand side changes its state, the value of f will be re-evaluated.

Using logic expressions makes it easier to write Verilog code. But even

higher levels of abstraction can often be used to advantage.

Consider again the multiplexer circuit of Figure 5.14. The

circuit can be described in words by saying that f = x1 if s = 0 and f =

x2 if s = 1. In Verilog, this behavior can be defined with the if-else

statement

if (s == 0)

f = x1;

else

f = x2;

module example4 (x1, x2, x3, x4, f, g, h);

input x1, x2, x3, x4;

output f, g, h;

assign g = (x1 & x3) | (x2 & x4);

assign h = (x1 | x3) & (x2 | x4);

assign f = g | h;

endmodule

Figure 5.18 Using the continuous assignment to specify the circuit in Figure 5.16.

Behavioral specification
module example5 (x1, x2, s, f);

input x1, x2, s; output f;

reg f;

always @(x1 or x2 or s)

if (s == 0)

f = x1;

else

f = x2;

endmodule

Figure 5.19 Behavioral specification

The complete code is given in Figure 5.19. The first line illustrates how a comment can

be inserted. The if-else statement is an example of a Verilog procedural statement.

Verilog syntax requires that procedural statements be contained inside a

construct called an always block, as shown in Figure 5.19. An always block can

contain a single statement, as in this example, or it can contain multiple statements. A

typical Verilog design module may include several always blocks, each

representing a part of the circuit being modeled. An important property of the

always block is that the statements it contains are evaluated in the order given in the

code. This is in contrast to the continuous assignment statements, which are

evaluated concurrently and hence have no meaningful order. The part of the

always block after the @ symbol, in parentheses, is called the sensitivity list. This

list has its roots in the use of Verilog for simulation. The statements inside an always

block are executed by the simulator only when one or more of the signals in the

sensitivity list changes value. In this way, the complexity of a imulation process is

simplified, because it is not necessary to execute every statement in the code at all

times. When Verilog is being employed for synthesis of circuits, as in this book, the

sensitivity list simply tells the Verilog compiler which signals can directly affect the

outputs produced by the always block. If a signal is assigned a value using

procedural statements, then Verilog syntax requires that it be declared as a variable;

this is accomplished by using the keyword reg in Figure 5.19. This term also derives

from the simulation jargon: It means that, once a variable’s value is assigned with

a procedural statement, the simulator “registers” this value and it will not change until

the always block is executed again. Instead of using a separate statement to declare

that the variable f is of reg type in Figure 5.19, we can alternatively use the

syntax output reg f;

which combines these two statements. Also, Verilog 2001 adds the ability to declare a

signal’s direction and type directly in the module’s list of ports. This style of code is

illustrated in Figure 5.20. In the sensitivity list of the always statement we can

use commas instead of the word or, which is also illustrated in Figure 5.20.

Moreover, instead of listing the relevant signals in the sensitivity list, it is possible to

write simply always @(∗)

or even more simply

always @∗

// Behavioral specification

module example5 (input x1, x2, s, output reg f);

always @(x1, x2, s)

if (s == 0)

f = x1;

else

f = x2;

endmodule

Fig 5.20 A more compact version of the code in Figure 5.19.

HIERARCHICAL VERILOG CODE

The examples of Verilog code given so far include just a single module. For

larger designs, it is often convenient to create a hierarchical structure in the

Verilog code, in which there is a top-level module that includes multiple instances of

lower-level modules. To see how hierarchical Verilog code can be written consider the

circuit in Figure 5.21. The purpose of the circuit is to generate the arithmetic sum of

the two inputs x and y, using the adder module, and then to show the resulting decimal

value on the 7-segment display. Verilog code for the adder module from Figure 5.21 and

the display module from Figure 5.21 is given in Figures 5.22 and 5.23, respectively. For

the adder module con- tinuous assignment statements are used to specify the two-bit sum

s1s0. The assignment statement for s0 uses the Verilog XOR operator, which is specified as

s0 = a ∧ b. The code for the display module includes continuous assignment statements

that correspond to the

Fig 5.21 A logic circuit with two modules

An adder module module adder (a, b, s1, s0);

input a, b; output s1, s0;

assign s1 = a & b;

assign s0 = a^b;

endmodule
Fig 5.22 Verilog specification of the circuit in Figure 5.21.

A module for driving a 7-segment display module display (s1,

s0, a, b, c, d, e, f, g);

input s1, s0;

output a, b, c, d, e, f, g;

assign a = s0;

assign b = 1;

assign c = s1;

assign d = s0;

assign e = s0;

assign f = s1 & s0;

assign g = s1 & s0;

endmodule

Fig 5.23 Verilog specification of the circuit in Figure 5.21

module adder_display (x, y, a, b, c, d, e, f, g);

input x, y;

output a, b, c, d, e, f, g;

wire w1, w0;

adder U1 (x, y, w1, w0);

display U2 (w1, w0, a, b, c, d, e, f, g);
endmodule

The statement

Figure 5.24 Hierarchical Verilog code for the circuit in Figure 5.21

assign b = 1;

assigns the output b of the display module to have the constant value 1. The top-

level Verilog module, named adder_display, is given in Figure 5.21. This module

has the inputs x and y, and the outputs a, . . . , g. The statement

wire w1, w0;

is needed because the signals w1 and w0 are neither inputs nor outputs of

the circuit in Figure 5.24. Since these signals cannot be declared as input or

output ports in the Verilog code, they have to be declared as (internal)

wires. The

statement

adder U1 (x, y, w1, w0);

instantiates the adder module from Figure 5.22 as a submodule. The submodule is given a name,

U1, which can be any valid Verilog name. The order in which signals are listed in the

instantiation statement determines which signal is connected to each port in the submodule. The

instantiation statement also attaches the last two ports of the adder submodule, which are

its outputs, to the wires w1 and w0 in the top-level module. The statement

display U2 (w1, w0, a, b, c, d, e, f, g);

instantiates the other submodule in our circuit. Here, the wires w1 and w0, which have already

been connected to the outputs of the adder submodule, are attached to the corre-sponding input

ports of the display submodule. The display submodule’s output ports are attached to the a, . . . , g

output ports of the top-level module.

Section-A

Unit – V
Assignment-Cum-Tutorial Questions

1. The inputs in the PLD is given through

a) NAND gates b) OR gates c) NOR gates d) AND gates

2. PAL refers to

a) Programmable Array Loaded b) Programmable Logic Array c)

Programmable Array Logic d) None of the Mentioned

3. Outputs of the AND gate in PLD is known as

a) Input lines b) Output lines c) Strobe lines d) None of the Mentioned

4. PLA contains

a) AND and OR arrays b) NAND and OR arrays c) NOT and AND arrays d) NOR and OR

5. A PLA is similar to a ROM in concept except that

a) It hasn’t capability to read only b) It hasn’t capability to read or write operation

c) It doesn’t provide full decoding to the variables d) It hasn’t capability to write only

6. For programmable logic functions, which type of PLD should be used?

a) PLA b) CPLD c) PAL d) SLD

7. The complex programmable logic device contains several PLD blocks and

a) A language compiler b) AND/OR arrays c) Global interconnection matrix d) Field-

programmable switches

8. PALs tend to execute logic. a)

SAP b) SOP c) PLA d) SPD

9. Which type of device FPGA are?
a) SLD b) SROM c) EPROM d) PLD

10. For designing a 4-variable combinational circuit, a designer must use a a) ROM

with atleast 16 locations b) PLA with atleast 32 product terms
c) PLA with atleast 16 product terms d) PLA with atleast 16 product terms and 16 input
OR gate

11. A 32x10 ROM contains a decoder of size a)

5x32 b) 32x32 c) 32x10 d) 10x32

12. Once a PAL has been programmed:

a) it cannot be reprogrammed. b) its outputs are only active HIGHs c) its

outputs are only active LOWs d) its logic capacity is lost

13. Combinational Programmable Logic Devices (PLDs) circuits comprise of --------- a) Only

gates b) Only flip flops c) Both a and b d) None of the above

14. Which among the following statement/s is/are not an/the advantage/s of
Programmable Logic Devices (PLDs)?

a) Short design cycle b) increased space requirement c)

Increased switching speed d) All of the above

15. The difference between a PAL & a PLA is a)
PALs and PLAs are the same thing
b) The PAL has a programmable OR plane and a programmable AND plane, while the
PLA only has a programmable AND plane
c) The PLA has a programmable OR plane and a programmable AND plane, while the
PAL only has a programmable AND plane
d) The PAL has more possible product terms than the PLA

16. The FPGA refers to

a) First programmable Gate Array b) Field Programmable Gate Array c) First

Program Gate Array d) Field Program Gate Array

17. In FPGA, vertical and horizontal directions are separated by

a) A line b) A channel c) A strobe d) A flip-flop

18. Most FPGA logic modules utilize a(n) approach to create the desired logic

functions.

a) AND array b. Look-up table c. OR array d. AND and OR array

19. PROM stands for

a) Permanent Read Only Memory b) Portable Read Only Memory c)

Programmable Read Only Memory d) Plugin Read Only Memory

20. In the following PLA, which output implements the logic function ABCD?

a) X b) Y c) Z d) all of the above

21. Simple Programmable Logic Devices (SPLDs) are also regarded as . a)
Programmable Array Logic (PAL) b) Generic Array Logic (GAL)
c) Programmable Logic Array (PLA) d) All of the above

22. The content of a simple programmable logic device (PLD) consists of:

a) advanced sequential logic functions b) thousands of basic logic gates

c) thousands of basic logic gates and advanced sequential logic functions d) none

23. The complex programmable logic device (CPLD) contains --------------------

24. State whether the following statements are TRUE or FALSE:

a. Verilog is case sensitive.

b. “beginmodule” and “endmodule” are reserved words in Verilog.

c. The semantics of an “&” operator depends on the number of operands. d. An “if”

statement must always be inside of an “always” block.

e. Verilog may be written at the Behavioral, Structural, Gate, Switch, and Transistor

levels.

25. How many logic values defined in Verilog with their strength’s

a) One b) Two c) Three d) Four

Section-B

1) Give the classification of PLDs with respect to their programmability.

2) Explain the internal structure of PROM.

3) What is programmable logic array? How it differs from PROM?

4) Give the comparison between PROM, PLA and PAL.

5) Show how these functions can be implemented on a PLA having an 8*8 AND array and a

4X8 OR array.

F1(A,B, C,D) = ∑m (2, 3, 6, 7, 11, 15); F2(A,B, C,D) = ∑m (0, 4, 8, 9, 11, 15) F3(A,B,C,D) = ∑m

(1,3,5,7,10,11); F4(A,B,C,D) = ∑m (0, 2, 4, 6, 8, 9, 11, 12, 13, 15)

6) Implement 3-bit binary to gray code converter using PROM.

7) Using PAL, implement full adder digital circuit.

8) Explain levels of design description in Verilog HDL.

9) Design full adder using gate level modeling Verilog HDL.

10) Design 8X1 multiplexer using behavioral flow modeling?

11) Design full adder using half adder using hierarchical flow modeling?

12) Explain design at behavioral levels in HDL.

13) Explain the basic structures of CPLD and FPGA.

14) Realize the following functions using PLA and PAL, and give programming table for both.

F1(A,B, C,D) = ∑m (2 ,3, 6, 7, 10, 14, 15); F2(A,B, C,D) = ∑m (3, 5, 7, 10, 12, 14, 15)

F3(A,B,C,D) = ∑m (2, 3, 7, 8, 9, 12, 13, 14, 15).

15) With neat steps explain about CAD design flow using Verilog HDL.

16) Give advantages of FPGAs over PLDs.

17) Write short notes on important features of Veriog HDL.

Section-C
1) Choose the correct statement from the following. GATE-1992

a) PROM contains a programmable AND array and a fixed OR array. b) PLA

contains a fixed AND array and a programmable OR array.

c) PLA contains a programmable AND array and a programmable OR array d) PROM

contains a fixed AND array and a programmable OR array.

2) A PLA can be used GATE-1994

a) As a microprocessor b) as a dynamic memory
c) to realize a sequential logic d) to realize a combinational logic

3) Which one of the following statements is correct? IES-2013
a) PROM contains a programmable AND array and a fixed OR array b) PLA
contains a fixed AND array and a programmable OR array
c) PROM contains a fixed AND array and programmable OR array
d) PLA contains a programmable AND array and a programmable OR array

4) What is the minimum size of ROM required to implement the given Boolean

function. GATE-1996

UNIT – IV

 Finite State Machines

Objectives:

• To familiarize with the concepts of Finite state machines.

Syllabus:

Types of FSM, Capabilities and limitations of FSM, State assignment, Realization of FSM

using flip-flops, Mealy to Moore conversion and vice-versa, Reduction of state tables using

partition technique

Outcomes:

Students will be able to

• design FSM charts using flip flops.

• understand the melay machines and moore machines.

• Reduction methods of state tables.

• partition technique.

Model Of A Finite State Machine (FSM)
 It is a Finite State Machine (FSM) also called Finite Automation in the literature pertaining to

automata theory. FSM comprises an input set (I), output set (Z),a set of states (S), state transition

function (𝛿), and output function (λ). Thus, the finite state machine M is a quintuple given by M

= (I,Z,S, 𝛿, λ),where 𝛿 is a function of present state resulting in the next state and λ is a function

which enables us to compute the output depending on the present inputs and present state.The

previous statement refers to what is generally called the Mealy Machines.

The clock pulses control all timing in the machine . If the clock is removed, the model represents

an asynchronous sequential machine with mere delays replacing flip-flops.

Limitations Of Finite State Machines

• No finite state machine can be produced for an infinite sequence.

• No finite state machine can multiply two arbitrary large binary numbers.

No finite state machine can be designed to produce such a non-periodic infinite sequence for

a periodic input.

Mealy And Moore Models

 A sequential machine M is a quintuple comprising a set of inputs I,a set of outputs Z, a set

of states S, a transition function 𝛿 which enables finding the next state depending on the

present state and present input and finally an output function λ.This is symbolically

expressed as M=(I,Z,S, 𝛿, λ).

If the output function depends on the present state and present inputs,it is called the Mealy

model,named after G.H.Mealy, a pioneer in the field. If the output is associated only with the

present state,it is called the Moore model, named after another pioneer E.F.Moore.The

counters are clearly Moore machines as the output depends only on the states of the flip-

flops.Likewise,

a sequence detector is also a Moore machine.Serial adder is an example of a Mealy machine

as each one of its states is reached producing a 0 or 1 output depending on the starting state

and the value of the inputs.

Mealy To Moore Conversion

Let us learn how to convert a Mealy machine into a Moore machine .The state diagram and the

state table of the synchronous serial adder are given below.Notice that the state P is reached from

the state Q on the application of the inputs AB=00 and ,in the process, the machine produces an

output Z=1 indicated on the arc as 00/1.Also notice that the machine produces Z=0 in another

transition to P.This transition is indicated as a self loop around P on inputs AB=00/0.For AB=01

or 10 while in P, the machine produces an output 1 and remains in the same state P.

The two important observations are

1.If the Mealy machine has K states, the equivalent Moore machine will have at most 2K states if

the output is a binary variable.

2.There is no power-on state,unless specifically defined.A special state may be introduced if the

user wants one.

Moore To Mealy Conversion

 It is amazingly simple to convert a Moore to Mealy machine.Let some state si given Moore

machine be associated with an output Zi.What we need to do is simply associate the output Zi

where Si occurs as the next state by scanning all the input columns.All states of Moore machine

are Z homogeneous.

Reduction Of State Tables Using Partition Technique:

 Clearly, the 0 partition P0 contains all the states of the machine in one group indicated by

brackets, because by applying 0 inputs, that is ,no inputs at all, it is not possible to distinguish

between the states.If you apply any one input, either x=0 or x=1, observe that the outputs ,A,B,F

cause the corresponding output pattern to be 00 while the states C,D,E cause the outputs to be 01

in the two input columns of the corresponding rows. Thus, by merely observing the outputs , we

may form the 1-partition P1 as (ABF),(CDE).

If each successor pair is within one bracket , we retain the pair intact; otherwise we split the pair.

Suppose in P2 ,we consider the transition from pair AB in the x=0 column and x=1 column. This

means that “equivalence of A and B implies equivalence of A and B”- a strange partition which

is to be ignored.

 Continuing the process, we find that neither C and E nor D and E can be equivalent. Hence E

parts company from CD in the next partition P3 .Continuing further , we find that P4 is identical

to P3 and hence we stop here and conclude that no experiment exists to distinguish between the

states AB and CD. Hence we taken them as equivalence classes.

Derivation Of Flip-Flop Input Equations

 After the number of states in a state table has been reduced, the following procedure can be

used to derive the flip-flop input equations:

1. Assign flip-flop state values to correspond to the states in the reduced table.

2. Construct a transition table which gives the next states of the flip-flops as a function of the

present states and inputs.

3. Derive the next state maps from the transition table.

 We could make a straight binary state assignment for which S0 is represented by flip-

flops states ABC=000, S1 by ABC =001, S2 by ABC=010, etc. However because the

correspondence between flip-flops states and the state names is arbitrary , we could use many

different state assignments. Using a different assignment may lead to simpler or more complex

flip-flops input equations.

 S0=000, S1=110, S2=001 , S3=111, S4=011, S5=101, S6=010

For XABC=0000 the next state entry is 110, so we fill in A+ =1 , B+ =1, C+=0.The below figure

shows the D flipflop input equations can be derived directly from the next state maps because

DA=A+ , DB=B+, DC=C+. If J-K flip-flops are used, the J and K input equations can be derived

from the next state maps as shown below.

 A sequential circuit with two inputs (X1 and X2) and two outputs (Z1 and Z2).Note that the

column headings are listed in Karnaugh map order because this will facilitate derivation of the

flip-flops input equations. Because the table has four states, two flip-flops (A and B) are required

to realize the table.

If J-K, T, or S-R flip-flops are used, the flip-flops input maps can be derived from the next state

maps.

Equivalent State Assignments

 After the number of states in a state table has been reduced, the next step in realizing the

table is to assign flip-flop states to correspond to the states in the table. The trail-and-error

method described next is useful for only a small number of states. If the number of states is small,

it may be feasible to try all possible state assignments, evaluate the cost of the realization for

each assignment, and choose the assignment with low cost.

 If symmetrical flip-flops such as T, J-K, S-R are used, complementing one or more columns of

the state assignment will have no effect on the cost of realization. Consider a J-K flip-flip

imbedded in a circuit. Leave the circuit unchanged and interchange the J and K input connections.

If unsymmetrical flip-flops are used such as D flip-flop , it is still true that permuting columns in

the state assignment will not affect the cost; however complementing a column may require

adding an inverter to the circuit .

If different types of gates are available the circuit can generally be redesigned to eliminate the

inverter and use the same number of gates as the original.

 The J-K and D flip-flops input equations for the three assignments can be derived using

Karnaugh maps.

 We will say that two state assignments are equivalent if one can be derived from the other

by permuting and complementing columns.Two state assignments which are not equivalent are

said to be distinct. Hand solution is feasible for two, three,or four states ; computer solution is

feasible for five through eight states; but more than nine states it is not practically to try all

assignments even if high-speed computer is used.

IMPORTANT TERMS:

Terminal state:

 A terminal state is a state with no incoming arcs which start from other states and

terminate on it.

Strongly connected machine:

 A sequential machine M is said to be strongly connected, if for every pair of states si,

sj of the sequential machine,there exists an input sequence which takes the machine M

from si to sj.

Redundant states:

 Redundant states are states whose functions can be accomplished by other states.

Equivalent states:

 Two states are said to be equivalent if for every possible set of inputs they generate

exactly the same output and the same next state.

When equivalent states are there, one of them can be retained and all others can be

removed without altering the input-output relationship because they are redundant. This

results in reduction of states which in turn reduces the number of required flip-flops and

logic gates reducing the cost of final circuit.

UNIT-VI

Digital Design using HDL’s

Objective:
➢ To give a model of combinational and sequential circuits using HDL’s.

Syllabus:

 Verilog for combinational circuits- conditional operator, if-else statement, case statement, for

loop; using storage elements with CAD tools-using Verilog constructs for storage elements,

blocking and non-blocking assignments, non-blocking assignments for combinational circuits,

flip-flop with clear capability, using Verilog constructs for registers and counters.

Outcome:

 Students will be able to

➢ Develop digital circuits using HDL

➢ Differentiate blocking and non-blocking assignments in Verilog.

6.1 Verilog for Combinational circuits:

Rather than using logic gates or logic expressions, combinational circuits can be specified

in terms of their behavior. To describe the building blocks efficiently, several Verilog constructs

have been used. In many cases a given circuit can be described in various ways, using different

constructs.

A circuit can be described using if-else statement can also described using a case

statement or perhaps a for loop. In general there is no restrict rules that dictate when one style

should be preferred over another.

Various constructs which are useful to design combinational circuits are discussed in

following sections.

6.1.1 Conditional Operator:

In a logic circuit it is often necessary to choose between several possible signals or values

based on the state of some condition.

 Example: Multiplexer

 In Multiplexer the output is equal to the data input signal chosen by the valuation of the

select inputs. For simple implementation of such choices Verilog provides a conditional operator

(? :) which assigns one of two values depending on a conditional expression. It involves three

operands used in the syntax.

 conditional_expression ? true_expression : false_expression

Example: 2X1 Multiplexer

The 2X1 Multiplexer has the inputs w0,w1 and s, and the output f. The signal s is used for the

selection. The output f is equal to w1 if the select input s has the value 1; otherwise f is equal to

w0.

The following module shows 2X1 multiplexer code using conditional operator in an assignment

statement.

module mux2x1 (w0,w1,s,f);

input w0,w1,s;

output f;

assign f = s ? w1 : w0;

endmodule

The conditional operator can be used in always block. The following module shows 2X1

multiplexer code using conditional operator in always block.

module mux2x1 (w0,w1,s,f);

input w0,w1,s;

output reg f;

always @(w0,w1,s)

 f = s ? w1 : w0;

endmodule

Example: 4X1 Multiplexer

The 4X1 Multiplexer has 2 select line s1 and s0, which are represented by the two-bit vector S.

 The first conditional expression tests the value of bit s1. If s1=1, the s0 is tested and f is

set to w3 if s0=1 and f is set to w2 if s0=0.This corresponds to third and fourth rows of the truth

table.

Similarly if s1=0 the conditional operator on the right chooses f=w1 if s0=1 and f=w0 if

s0=0, thus realizing the first two rows of the truth table.

module mux4x1 (w0,w1,w2,w3,S,f);

input w0,w1,w2,w3;

input [1:0] S;

output f;

assign f = S[1] ? (S[0] ? w3 :w2) : (S[0] ? w1 : w0);

endmodule

6.1.2 The if-else Statement:

 Syntax: if (conditional_expression) statement;

 else statement;

If the expression is evaluated to true then the first statement (or a block of statements delineated

by begin and end keywords) is executed, or else the second statement (or a block of statements)

is executed.

2X1 multiplexer code using if-else:

module mux2x1 (w0,w1,s,f);

input w0,w1,s;

output reg f;

always @(w0,w1,s)

 if (s == 0)

 f=w0;

 else

 f=w1;

endmodule

4X1 multiplexer code using if-else:

module mux4x1 (w0,w1,w2,w3,S,f);

input w0,w1,w2,w3;

input [1:0] S;

output reg f;

always @ (*)

 if (s == 2’b00)

 f = w0;

else if(s == 2’b01)

 f=w1;

else if (s == 2’b10)

 f=w2;

else

 f = w3;

endmodule

6.1.3 The case statement

The if-else statement provides the means for choosing an alternative based on the value of

an expression. Instead, it is often possible to use the Verilog case statement which is defined as

case (expression)

alternative1: statement;

alternative2: statement;

·

·

·

alternativej: statement;

[default: statement;]

 endcase

The value of the controlling expression and each alternative are compared bit by bit. When there

is one or more matching alternative, the statement(s) associated with the first match (only) is

executed. When the specified alternatives do not cover all possible valuations of the controlling

expression, the optional default clause should be included. Otherwise, the Verilog compiler will

synthesize memory elements to deal with the unspecified possibilities.

Example 1 : 4X1 multiplexer code using case

module mux4x1 (w, S, f);

input [3:0]w;

input [1:0] S;

output reg f;

 always @ (*)

 case (s)

 0: f = w[0];

 1: f = w[1];

 2 : f = w 2];

 3 : f = w[3];

 default: f=1’b0;

 endcase

 endmodule

Example 2 : 2 to 4 decoder

 module dec2to4 (W, En, Y);

input [1:0]W;

input En;

output reg [0:3] Y;

always @(W, En)

case ({En,W})

3’b100: Y = 4’b1000;

3’b101: Y = 4’b0100;

3’b110: Y = 4’b0010;

3’b111: Y = 4’b0001;

default: Y = 4’b0000;

endcase

endmodule

6.1.3.1 casex and casez statements

In the case statement it is possible to use the logic values 0, 1, z, and x in the case alternatives. A

bit-by-bit comparison is used to determine the match between the expression and one of the

alternatives.

Verilog provides two variants of the case statement that treat the z and x values in a different way.

The casez statement treats all z values in the case alternatives and the controlling expression as

don’t cares. The casex statement treats all z and x values as don’t cares.

Example : 4X2 Priority encoder

 module priority (W, Y);

input [3:0]W;

output reg [1:0] Y;

always @(W)

begin

casex (W)

4’b1xxx: Y = 3;

4’b01xx: Y = 2;

4’b001x: Y = 1;

4’b0001: Y = 0;

default: begin

Y = 2’bx;

 endcase

 end

endmodule

// The first alternative specifies that

the output is set to y1y0 = 3 if the input w3

is 1.

// This assignment does not depend on the

values of inputs w2, w1, or w0; hence their

values do not matter.

// The other alternatives in the casex //

statement are evaluated only if w3 = 0.

// The second alternative states that if w2

is 1, then y1y0 = 2.

// If w2 = 0, then the next alternative results

 in y1y0 = 1 if w1 = 1.

// If w3 = w2 = w1 = 0 and w0 = 1, then the

fourth alternative results in y1y0 = 0.

6.1.4 The for loop

If the structure of a desired circuit exhibits a certain regularity, it may be convenient to

define the circuit using a for loop. The for loop has the syntax

 for (initial_index; terminal_index; increment) statement;

A loop control variable, which has to be of type integer, is set to the value given as the

initial index. It is used in the statement or a block of statements delineated by begin and end

keywords. After each iteration, the control variable is changed as defined in the increment. The

iterations end after the control variable has reached the terminal index.

Unlike for loops in high-level programming languages, the Verilog for loop does not

specify changes that take place in time through successive loop iterations. Instead, during

each iteration it specifies a different sub circuit.

Example 1: 2 to 4 decoder

module dec2to4 (W, En, Y);

input [1:0]W;

input En;

output reg [0:3] Y;

integer k;

 always @(W, En)

 for (k = 0; k< = 3; k = k+1)

 if ((W == k) && (En == 1))

 Y[k] = 1;

 else

 Y[k] = 0;

Endmodule

Example 2: 4X2 priority encoder

module priority (W, Y);

input [3:0]W;

output reg [1:0] Y;

integer k;

always @(W)

 begin

 Y = 2’bx;

for (k = 0; k < 4; k = k+1)

if (W[k])

Y= k;

 end

endmodule

// The effect of the loop is to repeat the if-

else statement four times, for k = 0, . . . , 3.

// The first loop iteration sets y0 = 1 if W = 0

and En = 1.

// Similarly, the other three iterations set the

values of y1, y2, and y3 according to the

values of W and En.

// if one or more of the four inputs

w3, . . . ,w0 is equal to 1, the for loop will

set

the valuation of y1y0 to match the index of

the highest priority input that has the value 1.

// Note that each successive iteration through

the loop corresponds to a higher priority. //

Verilog semantics specify that a signal that

receives multiple assignments in an always

block retains the last assignment.

// Thus the iteration that corresponds to the

highest priority input that is equal to 1 will

override any setting of Y established during

the previous iterations.

6.2 Using Storage elements with CAD Tools

 Circuits with storage elements can be designed using either schematic capture or Verilog code.

 6.2.1 Using Verilog Constructs for Storage Elements

A simple way of specifying a storage element is by using the if-else statement to describe

the desired behavior responding to changes in the levels of data and clock inputs.

Consider the always block

 always @(Control, B)

 if (Control)

 A= B;

where A is a variable of reg type. This code specifies that the value of A should be made

equal to the value of B when Control = 1. But the statement does not indicate an action that

should occur when Control = 0. In the absence of an assigned value, the Verilog compiler

assumes that the value of A caused by the if statement must be maintained when Control is not

equal to 1. This notion of implied memory is both of these signals can cause a change in the value

of the Q output. realized by instantiating a latch in the circuit.

Example 1: Gated D latch

The following module named D_latch, which has the inputs D and Clk and the output Q.

The if clause defines that the output must take the value of D when Clk = 1. Since no else clause

is given, a latch will be synthesized to maintain the value of Q when Clk = 0. Therefore, the code

describes a gated D latch. The sensitivity list includes Clk and D because both of these signals

can cause a change in the value of the Q output.

module D_latch (D, Clk, Q);

input D, Clk;

output reg Q;

 always @ (D, Clk)

 if (Clk)

 Q = D;

endmodule

Example 2: D Flip-Flop

 The following module named flip flop, which is a positive- edge-triggered D flip-flop.

The sensitivity list contains only the clock signal because it is the only signal that can cause a

change in the Q output. The keyword posedge specifies that a change may occur only on the

positive edge of Clock. At this time the output Q is set to the value of the input D. Since posedge

appears in the sensitivity list, Q will be implemented as the output of a flip-flop.

module flipflop (D, Clock, Q);

input D, Clock;

output reg Q;

 always @(posedge Clock)

 Q = D;

endmodule

6.2.2 Blocking and Non-Blocking Assignments

Two types of procedural assignment statements:

a) Blocking (denoted by “=“)

b) Non-blocking (denoted by “<=“)

6.2.2.1: Blocking Assignments

Blocking assignment statements are executed in the order they are specified in a

procedural block. The target of an assignments gets updated before the next sequential statement

in the procedural block is executed. They do not block execution of statements in other

procedural blocks. This is the recommended style for modeling combinational logic.

Example:

module example_blocking (D, Clock, Q1, Q2);

input D, Clock;

output reg Q1, Q2;

always @(posedge Clock)

begin

Q1 = D;

Q2 = Q1;

End

endmodule

In the above code the always block is sensitive to the positive clock edge, both Q1 and Q2

will be implemented as the outputs of D flip-flops. However, because blocking assignments are

involved, these two flip-flops will not be connected in cascade The first statement Q1 = D; sets

Q1 to the value of D. This new value is used in evaluating the subsequent statement Q2 = Q1;

which results in Q2 = Q1 = D. The synthesized circuit has two parallel flip-flops, as illustrated

in following figure.

6.2.2.2: Non- Blocking Assignments

The “<=“ operator is used to specify non-blocking assignment. Non-blocking assignment

statements allow scheduling of assignments without blocking execution of statements that follow

within the procedural block. The assignment to the target gets scheduled for the end of the

simulation cycle (at the end of the procedural block). Statements subsequent to the instruction

under consideration are not blocked by the assignment. These assignments allow concurrent

procedural assignment, suitable for sequential logic.

Example:

module example_non_blocking (D, Clock, Q1, Q2);

input D, Clock;

output reg Q1, Q2;

always @(posedge Clock)

 begin

 Q1 < = D;

 Q2 < = Q1;

 end

endmodule

The variables Q1 and Q2 have some value at the start of evaluating the always block, and then

they change to a new value concurrently at the end of the always block. This code generates a

cascaded connection between flip-flops, which implements the shift register as shown in

following figure.

6.3 Non-blocking assignments for combinational circuits

Non-blocking assignments can be used in most situations, but when subsequent assignments in

an always block depend on the results of previous assignments, the non-blocking assignments

can generate nonsensical circuits.

Example: Assume that we have a three-bit vector A = a2a1a0, and we wish to generate a

combinational function f that is equal to 1 when there are two adjacent bits in A that have the

value 1.

With blocking assignments the function f is specified as

always @(A)

begin

f = A[1] & A[0];

f = f | (A[2] & A[1]);

end

These statements produce the desired logic function, which is f = a1a0 + a2a1.

With Non- blocking assignments the function f is specified as

f <= A[1] & A[0];

f <= f | (A[2] & A[1]);

Here f has an unspecified initial value when we enter the always block. The first statement

assigns f = a1a0, but this result is not visible to the second statement. It still sees the original

unspecified value of f. The second assignment overrides (deletes!) the first assignment and

produces the logic function f = f + a2a1. This expression does not correspond to a combinational

circuit, because it represents an AND-OR circuit in which the OR-gate is fed back to itself.

So, It is best to use blocking assignments when describing combinational circuits, so as to avoid

accidentally creating a sequential circuit.

6.4: Flip-flops with clear Capability

Reset (clear) is a signal that is used to initialize the hardware, as the design does not have a way

to do self-initialization. That means, reset forces the design to a known state. In simulation,

usually it is activated at the beginning, but in real hardware, reset is usually activated to power

up the circuits.

By using a particular sensitivity list and a specific style of if-else statement, it is possible to

include clear (or preset) signals on flip-flops.

There are two types of resets used in hardware designs. They are synchronous and asynchronous

resets.

6.4.1 Synchronous Reset

Synchronous reset means reset is sampled with respect to clock. In other words, when reset is

enabled, it will not be effective till the next active clock edge.

Example:

module flipflop (D, Clock, Resetn, Q);

input D, Clock, Resetn;

output reg Q;

always @(posedge Clock)

if (!Resetn)

Q <= 0;

else

Q <= D;

Endmodule

In the above code, the reset signal is acted upon only when a positive clock edge arrives.

6.4.2: Asynchronous Reset

In asynchronous reset, reset is sampled independent of clock. That means, when reset is enabled

it will be effective immediately and will not check or wait for the clock edges.

Example:

module flipflop (D, Clock, Resetn, Q);

input D, Clock, Resetn;

output reg Q;

always @(negedge Resetn, posedge Clock)

if (!Resetn)

Q <= 0;

else

Q <= D;

endmodule

When Resetn, the reset input, is equal to 0, the flip-flop’s Q output is set to 0. Note that the

sensitivity list specifies the negative edge of Resetn as an event trigger along with the positive

edge of the clock. We cannot omit the keyword negedge because the sensitivity list cannot have

both edge-triggered and level sensitive signals.

6.5 Using Verilog Constructs for Registers and Counters

6.5.1: n-Bit Register with Asynchronous Clear:

Registers of different sizes are often needed in logic circuits, it is advantageous to define a

register module for which the number of flip-flops can be easily changed. n-bit Register code can

be written with parameter construct

 Parameter: Verilog allows constants to be defined in a module by the keyword parameter.

 Parameters cannot be used as variables. Parameter values for each module instance can be

 overridden individually at compile time. This allows the module instances to be customized.

 Use of parameters make the module definition flexible. Module behavior can be altered simply

 by changing the value of a parameter.

Code for n-bit register:

module regn (D, Clock, Resetn, Q);

parameter n = 16;

input [n –1:0] D;

input Clock, Resetn;

output reg [n –1:0] Q;

always @(negedge Resetn, posedge Clock)

if (!Resetn)

Q <= 0;

else

Q <= D;

endmodule

 The parameter n specifies the number of flip-flops in the register. By changing this parameter,

the code can represent a register of any size.

6.5.2: Four Bit Shift Register:

A four bit shift register can be written using hierarchical code that uses four D flip-flops. Instead

of using sub circuits, the shift register can also be written using behavioral style.

 In the following behavioral code, all actions take place at the positive edge of the clock. If L = 1,

the register is loaded in parallel with the four bits of input R. If L = 0, the contents of the register

are shifted to the right and the value of the input w is loaded into the most-significant bit Q3.

module shift4 (R, L, w, Clock, Q);

input [3:0] R;

input L, w, Clock;

output reg [3:0] Q;

always @(posedge Clock)

if (L)

Q <= R;

else

begin

Q[0] < = Q[1];

Q[1] < = Q[2];

Q[2] < = Q[3];

Q[3] < = w;

end

endmodule

6.5.3: N- Bit Shift Register:

The following code shows the code that can be used to represent shift registers of any size. The

parameter n, which has the default value 16, sets the number of flip-flops.

module shiftn (R, L, w, Clock, Q);

parameter n = 16;

input [n –1:0] R;

input L, w, Clock;

output reg [n –1:0] Q;

integer k;

always @(posedge Clock)

if (L)

Q <= R;

else

begin

for (k = 0; k < n –1; k = k+1)

Q[k] < = Q[k+1];

Q[n –1] <= w;

end

endmodule

6.5.4: Up-Counter

A four-bit up-counter with a reset input, Resetn, and an enable input, E. The outputs of the flip-

flops in the counter are represented by the vector named Q. The if statement specifies an

asynchronous reset of the counter if Resetn = 0. The else if clause specifies that if E = 1 the count

is incremented on the positive clock edge.

module upcount (Resetn, Clock, E, Q);

input Resetn, Clock, E;

output reg [3:0] Q;

always @(negedge Resetn, posedge Clock)

if (!Resetn)

Q <= 0;

else if (E)

Q <= Q + 1;

Endmodule

6.5.5: Up-Counter with parallel load

The following code defines an up-counter that has a parallel-load input in addition to a reset

input. The parallel data is provided as the input vector R. The first if statement provides the same

asynchronous reset. The else if clause specifies that if L = 1 the flip-flops in the counter are

loaded in parallel from the R inputs on the positive clock edge. If L = 0, the count is incremented,

under control of the enable input E.

module upcount (R, Resetn, Clock, E, L, Q);

input [3:0] R;

input Resetn, Clock, E, L;

output reg [3:0] Q;

always @(negedge Resetn, posedge Clock)

if (!Resetn)

Q <= 0;

else if (L)

Q <= R;

else if (E)

Q <= Q + 1;

Endmodule

6.5.6: Down Counter with parallel load

The following figure shows the code for a down-counter named downcount. A down-counter is

normally used by loading it with some starting count and then decrementing its contents. The

starting count is represented in the code by the vector R. On the positive clock edge, if L = 1 the

counter is loaded with the input R, and if L = 0 the count is decremented, under control of the

enable input E.

module downcount (R, Clock, E, L, Q);

parameter n = 8;

input [n –1:0] R;

input Clock, L, E;

output reg [n –1:0] Q;

always @(posedge Clock)

if (L)

Q <= R;

else if (E)

Q <= Q – 1

Endmodule

6.5.7: Up/Down Counter

Verilog code for an up/down counter is given in following Figure. This module combines the

capabilities of up and down counters. It includes a control signal up_down that governs the

direction of counting.

module updowncount (R, Clock, L, E, up_down, Q);

parameter n = 8;

input [n– 1:0] R;

input Clock, L, E, up_down;

output reg [n– 1:0] Q;

always @(posedge Clock)

if (L)

Q <= R;

else if (E)

Q < = Q + (up_down ? 1 : –1);

Endmodule

Assignment-Cum-Tutorial Questions

 Section-A
1. Which of the following statement is true for Verilog modules?

a. A module can contain definitions of other modules.

b. When a module X is called multiple numbers of times from some other module, only

 one copy of module X is included in the hardware after synthesis.

c. More than one module can be instantiated within another module.

d. None of the above

2. What does the statement “assign f = (a & b) | (a ^ b)” signify?

a. In module declaration f is declared as reg.

b. A dataflow description of the function f.

c. A structural description of the function f.

d. All of the above

3. Which of the following is not true for register type variables?

a. It will always map to a hardware register after synthesis.

b. It can be used in an expression on the RHS of an “assign” statement.

c. Once a value is assigned, it will hold the value.

d. None of the above.

4. If “clk” and “clear” are two inputs of a module that defines a register, which of the following

 event expressions must be used if we want to implement asynchronous clear (assuming “clear”

 is active low)?

a. always @(posedge clk)

b. always @(negedge clear)

c. always @(posedge clk or negedge clear)

d. None of the above

5. What will the following code segment do?

always @(posedge clock)

begin

red = blue;

blue = red;

end

a. Exchange the values of the variables “red” and “blue”.

b. Both variables will get the value previously stored in “red”.

c. Both variables will get the value previously stored in “blue”.

 d. None of the above.

6. What will the following code segment generate on synthesis, assuming that the four variables

 y0, y1, y2 and y3 map into four latches / flip-flops?

always @(posedge clock)

begin

y3 = in;

y2 = y3;

y1 = y2;

y0 = y1;

end

a. A 4-bit shift register. b. A 4-bit parallel-in parallel-out register.

c. Four D flip-flops all fed with the data “in”. d. None of the above.

7. What will the following code segment generate on synthesis?

always @(posedge clock)

begin

y3 <= in;

y2 <= y3;

y1 <= y2;

y0 <= y1;

end

a. A 4-bit shift register. b. A 4-bit parallel-in parallel-out register.

c. Four D flip-flops all fed with the data “in”. d. None of the above.

8. An event is triggered by symbol

 a. => b . ---> c . @ d. None

9. Which of the following is true about the always block?

 a. There can be exactly one always block in a design.

 b. There can be exactly one always block in a module.

c. Execution of an always block occurs exactly once per simulation run.

 d. An always block may be used to generate a periodic signal.

10. For describing circuits like flip flops _____________ statement is used

 a. Always b. Entity c. Component d. Process

11. In non- blocking assignment

a . Evaluates all RHS for current time unit and assign to LHS at current time

b . Evaluates all RHS for current time unit and assign to LHS at the end of time unit

c . Whole statement is done before control passes to next statement

d. None

12. If a variable is not assigned in all possible executions of an always statement then:

a. A don’t care is inferred

b. A latch is inferred

c. The variable is set to 0

d. The synthesis process will fail

Section-B

1.Write a verilog code to swap contents of two registers with and without a temporary register?

2. Write a Verilog code that represents a T flip-flop with asynchronous clear input.

3. Differentiate blocking and non blocking assignments with examples.

4. Why non-blocking assignments are not preferable in combinational circuits.

5. Using casex statement, write Verilog code for an 8-to-3 priority encoder.

6. What is the difference between synchronous Reset and Asynchronous reset.

7. Write Verilog code for 3-to-8 decoder using for loop.

Section-C

 1. Consider the Verilog code. What type of circuit does the code represent?

module example (W, En, y0, y1, y2, y3);

input [1:0]W;

input En;

output reg y0, y1, y2, y3;

always @(W, En)

begin

y0 = 0;

y1 = 0;

y2 = 0;

y3 = 0;

if (En)

if (W == 0) y0 = 1;

else if (W == 1) y1 = 1;

else if (W == 2) y2 = 1;

else y3 = 1;

end

endmodule

2. Consider the following Verilog module.

module guess (data, cond, result);

input [7:0] data;

input [1:0] cond;

output reg result;

always @(data)

begin

if (cond == 2’b00) result = |data;

else result = ~^data;

end

endmodule

Which of the following are true when the module is synthesized?

a. A combinational circuit will be generated.

b. A sequential circuit with a storage element for result will be generated.

c. The synthesize system will generate a wire for result.

d. None of the above.

3. Design four-bit Synchronous counter with parallel load. Use T flip-flops.

4. An SR flip-flop is a flip-flop that has set and reset inputs like a gated SR latch. Show how an

 SR flip-flop can be constructed using a D flip-flop and other logic gates.

5. The circuit in Figure looks like a counter. What is the counting sequence of this circuit?

