
Unit – I 
 

Objectives: 

• To familiarize with the concepts of different number systems and codes. 

 

Syllabus: 

Number systems - binary numbers, octal, hexadecimal, other binary codes; complements, signed 

binary numbers, digital logic operations and gates, basic theorems and properties of Boolean algebra, 

Boolean functions, canonical and standard forms, complements of Boolean functions, two-level 

NAND and NOR Implementation of Boolean functions. 

 

Outcomes: 

Students will be able to 

 

• understand various number systems. 

• perform the arithmetic operations using complementary methods. 

• understand basic theorems and properties of Boolean algebra. 

• understand basic logic operations and gates. 

• perform the Two level NAND – NAND and NOR-NOR realizations of Boolean expressions. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Learning Material 
 

Number Systems 
 

Purposes: 

1. To understand how does a digital computer work. Binary digital computers only work with 1’s 

and 0’s, or high and low voltage, or true and false. 

2. To convert among different number systems. We use decimal numbers everyday. Computers 

understand only binary numbers, which are lengthy and inconvenient to human beings. Octal 

and Hexadecimal numbers are introduced to make both happy: they are easier to be converted to 

binary numbers and also easier for us to handle. 

 

Classification: 

 
Unsigned Numbers 
 

Radices and Characters: 

• Binary:   0, 1 

• Decimal:   0, 1, 2, 3, 4, 5, 6, 7, 8, 9 

• Octal:   0, 1, 2, 3, 4, 5, 6, 7 

• Hexadecimal:  0, 1, 2, 3, 4, 5, 6, 7, 8, 9, A, B, C, D, E, F 

 

Structure of a number: 

 
Note: If no fractional part, the radix point can be omitted! 

 

dn-1 dn-2 … d2 d1 d0 . d_1 d_2 … d_m 

 

Radix point 

Fractional Part Integer Part 

Radix-Complement 

Numbers 

Single-Precision 

Double-Precision 

Unsigned 

Numbers Signed Integers 

Signed-Magnitude 
Diminished  

Radix-Complement 

Floating-Point 

Numbers 



Positional Notation or representation of numbers: 
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where    mnnird i −−−−−−  ,2,1,0,1,2,2,1,1,2,1,0 , and r  is the radix. 

 

The number of numerical values the system uses is called the Base or Radix of the system 

 

System 

 

Radix 

 

Allowable Digits 

 

Binary 

Octal 

Decimal 

Hexadecimal 

 

2 

8 

10 

16 

 

0,1 

0,1,2,3,4,5,6,7 

0,1,2,3,4,5,6,7,8,9 

0,1,2,3,4,5,6,7,8,9,A, B, C, D, E, F 

 

                    

 

Conversion of numbers from one radix to another radix 
 

• Conversion from given base to Decimal:   

 

write the number using the positional notation and then perform decimal arithmetic to 

compute the result, which is the decimal number. 

 

Example: Given the positional notations of the following numbers: (1101.1)2, (724)8, and (BCD)16. 

 

 

• (4021.2)5       = 4 x 53 + 0 x 52 + 2 x 51 + 1 x 50 + 2 x 5-1 = (511.4)10 

4 x 125 + 0 + 10 + 1 + 2 x (1/5) 

500 + 11 + .4 

  

• (B65F)16         = 11 x 163 + 6 x 162 + 5 x 161 + 15 x 160 = (46687)10 

11 x 4096 + 6 x 256 + 5 x 16 + 15 

45056 + 1536 + 80 + 15 

 

• (1010.011) 2    = 23 + 21 + 2-2 + 2-3 = (10.375) 10   

 

• (630.4) 8          =    6 x 82 + 3 x 81 + 0 x 80 + 4 x 8-1 = (408.5) 10 

 

 

 

• Conversion from Decimal to given base:  

 

Integer part: Divide the decimal number by the base to which we want to convert and cast 

out the reminders. 

Fractional part: Multiply the decimal number by the base to which we want to convert and 

cast out the integer part.  



Rationale: based on the positional notation.   

 

The conversion of decimal numbers with both integers and fraction parts is done by 

converting the integer and fraction separately and then combining the two answers. 

 

Example:  Convert (210)10 to binary and to hexadecimal (Radix 16). 

 

-    (210)10 = 1 x 27 + 1 x 26 + 0 x 25 + 1 x 24 + 0 x 23 + 0 x 22 

+ 1 x 21 + 0 x 20 

 

= 128 + 64 + 0 + 16 + 0 + 0 + 1 + 0 

 

= (11010010)2 

 

- (210)10 = 13 x 161 + 2 x 160 

 

= 208 + 2 = 210 = (D2)16 

 

 

• Conversion from Decimal 41 to Binary: 

 

                                Integer quotient       Remainder         Coefficient 

41/2 = 20 + ½   a0 = 1   

20/2 = 10 + 0   a1 = 0 

10/2 =  5 + 0   a2 = 0 

 5/2 =  2 + ½   a3 = 1 

 2/2 =  1 + 0   a4 = 0 

 1/2 =  0 + ½   a5 = 1 

 

• The conversion from decimal integers to any base-r system is similar to the example, except that 

division is done by r instead of 2. 

 

• Conversion from Decimal 153 to Octal: 

 

153 

  19  1 

           2  3 

    0 2 = (231) 8 

 

• Conversion from Decimal fraction (0.6875) 10 to Binary: 

 

Integer  Fraction Coefficient 

0.6875 x 2 =      1  + 0.3750 a-1 = 1   

0.3750 x 2 =      0  + 0.7500 a-2 = 0 

0.7500 x 2 =      1  + 0.5000 a-3 = 1 

0.5000 x 2 =      1  + 0.0000 a-4 = 1 

 



• The conversion from decimal fraction to any base-r system is similar to the example. 

Multiplication is by r instead of 2, and the coefficients found from the integers may range in 

value from 0 to r-1 instead of 0 and 1. 

 

• Conversion from Decimal fraction (0.513) 10 to Octal: 

 

0.513 x 8 = 4.104 

0.104 x 8 = 0.832 

0.832 x 8 = 6.656 

0.656 x 8 = 5.248 

0.248 x 8 = 1.984 

0.984 x 8 = 7.872 

 

   (0.513) 10 = (0.406517…) 8 

 

Binary to/from Octal and Hexadecimal: Starting at the binary point, cast off three (four) bits at a 

time and convert each group to its octal (hexadecimal) equivalent. Padding 0’s to the left for the 

integer part and to the right for the fractional part when necessary. 

 

 

The conversion from and to binary, octal and hexadecimal plays an important part in digital 

computers. Since 23 = 8 and 24 = 16, each octal digit corresponds to three binary digits and each 

hexadecimal digit corresponds to four binary digits. 

 

• Conversion from binary to Octal: 

 

(10 110 001 101 011. 111 100 000 110) 2 = (26153.7406) 8 

 

• Conversion from binary to Hexadecimal: 

 

(10 1100 0110 1011. 1111 0000 0110) 2 = (2C6B.F06) 16 

 

• Conversion from Octal to binary: 

 

(673.124) 8 = (110 111 011. 001 010 100) 2 

 

• Conversion from Hexadecimal to binary: 

 

(306.D) 16 = (0011 0000 0110. 1101) 2 

 

• Conversion from Hexadecimal to Decimal: 

 

(37B) 16  

3 x 162 + 7 x 161 + 11 x 160  

= 3 x 256 + 7 x 16 + 11 x 1  

= 768 + 112 +11  

= (891) 10 



r-1’s complement and r’s complement of unsigned numbers subtraction: 

 

9’s & 10’s Complements for decimal numbers: 

 

• The Subtraction of decimal numbers can be accomplished by the 9‘s & 10‘s compliment 

methods similar to the 1‘s & 2‘s compliment methods of binary numbers.  

• The 9‘s compliment (diminished radix complement) of a decimal number is obtained by 

subtracting each digit of that decimal number from 9.  

• The 10‘s compliment (radix complement) of a decimal number is obtained by adding a 1 to 

its 9‘s compliment. 
 
Example:  

9‘s compliment of 3465 and 782.54 is 
 

 9999  999.99 

-3465 -782.54 
---------- ----------- 

6534 217.45 
------------------ -------------------- 

 

10‘s complement of 4069 is  
9999 - 

4069 
----------  
5930 

+1  
---------- 

5931  
----------- 

 

9’s compliment method of subtraction: 

 

To perform this, obtain the 9‘s compliment of the subtrahend and to it, add the minuend, now 

call this number as intermediate result. If there is a carry to the LSD of this result to get the answer 

called end around carry. If there is no carry, it indicates that the answer is negative & the 

intermediate result is its 9‘s compliment. 
 
Example: Subtract using 9‘s complement  

(1) 745.81- 436.62 (2) 436.62 - 745.82 

  745.81 (normal subtraction)  436.62 
-436.62  -745.81 

----------  ---------- 
309.19  -309.19 

-----------  --------- 
   745.81  436.62 

+563.37 9‘s compliment of 436.62          +254.18 



----------  ------------ 

1309.18 (end around carry) 690.80 (no carry) 

                     +1                              ------------                    

-----------            9‘s complement of 690.80 

+309.19                                  = - 309.19 

-------------   
• If there is no carry indicating that answer is negative. so take 9‘s complement of 

intermediate result & put minus sign (-) then the result should be -309.19. 

• If there is a carry indicates that the answer is positive +309.19. Then there is no need of 

taking 9‘s complement. 

 

10’s compliment method of subtraction: 

 

• To perform this, obtain the 10‘s compliment of the subtrahend & add it to the minuend. If there 

is a carry ignore it.  

• The presence of the carry indicates that the answer is positive, the result is the answer. 

•  If there is no carry, it indicates that the answer is negative & the result is its 10‘s compliment. 

•  Obtain the 10‘s compliment of the result & place negative sign infront to get the answer. 

 

Example: 

 

   (a)  2928.54 - 416.73                  (b) 416.73 - 2928.54 

 2928.54 (normal subtraction) 0416.73 
-0416.73  -2928.54 

----------  ---------- 
2511.81  -2511.81 

-----------  --------- 
2928.54  0416.73 

          +9583.27 10‘s compliment of 416.73            +7071.46 
----------  ------------ 

12511.81 ignore the carry 7488.19 

                         (10’s complement)  

 +2511.81                                         --------- 

                                         -2511.81 

1‘s & 2’s compliment form for binary numbers: 

•  The 1‘s complement of a binary number is defined as the value obtained by inverting all the bits 

in the binary representation of the number (swapping 0s for 1s and vice versa). 

Example: 

For X = 1010, the 1's complement is given by 0101. 



• The 2's complement of a binary number X is obtained by following three methods 

1.  The expression 2n – X, where n is the number of bits of X. 

2.  All the bits are inverted (1’s complement) and a 1 is added in the least significant place. 

3.  The lowest order 1 in X is sensed, and all succeeding higher digits are inverted. 

Example: 

For X = 1010, the 2's complement is given by: 

1.    24 – 1010 = 10000 – 1010 = 0110. 

2.    1’s complement of 1010 is 0101 and 0101 + 1 = 0110. 

3.    The low order 1 in 1010 is at 1st bit position and after that the higher digits are    

   inverted   and the result is 1010. 

 

             

 

 

 

Signed binary numbers: 
 

Two ways of representation of signed numbers  

1. Sign Magnitude form   
2. Complemented form  

 

Sign Magnitude form:  

 

• In sign magnitude form, an additional bit called the sign bit is placed in front of the number. 

• If the sign bit is 0, the number is positive, and if it is a 1, then the number is negative. 
 

Example: 

 

 0 1 0 1 0 0 1  

 ↓        

Sign bit    = + 41 magnitude 

 ↑        

 1 1 0 1 0 0 1  

 

             = - 41     magnitude 

 

Representation of signed numbers using 2’s or 1’s complement method: 

 

• If the number is positive, the magnitude is represented in its true binary form & a sign bit 0 
is placed in front of the MSB. 

• If the no is negative, the magnitude is represented in its 2‘s or 1‘s compliment form & a 
sign bit 1 is placed in front of the MSB. 

 



Example: 
 

Sign bit magnitude          
 

  ↓              
 

                

     In any form 
 

   0 1 1  0   0  1  1 
 

        = +51       
 

              

In sign magnitude form 
 

1 1  1  0  0  1  1   
 

        =  -51        
 

           

In sign 2‘s compliment form 
 

1 0  0  1  1  0  1   
 

                                    

 = -51 

     

In sign 1‘s compliment form 
 

1 0  0  1  1  0  0   
 

= -51 
 

Given no. Sign magnitude form 2‘s complement form 1‘s complement form 

01101 +13 +13 +13 

010111 +23 +23 +23 

10111 -7 -9 -8 

1101010 -42 -22 -21 

 
Special case in 2’s complement representation: 

  
Whenever a signed no. has a 1 in the sign bit & all 0‘s for the magnitude bits, the 

decimal equivalent is -2
n
, where n is the no of bits in the magnitude. 

Example: 

 1000 = -8 & 10000 = -16 
 
2’s compliment Arithmetic: 
 

• The 2‘s complement system is used to represent positive numbers using modulus 
arithmetic.  

• The word length of a computer is fixed. i.e., if a 4-bit number is added to another 4-bit 
number, the result will be only of 4 bits.  

• Carry if any, from the fourth bit will overflow called the Modulus arithmetic.   
Example: 1100+1111=1011  

 

• In the 2‘s complement subtraction, add the 2‘s complement of the subtrahend to the 

minuend.  

• If there is a carry out, ignore it and look at the sign bit i.e., MSB of the sum term. 

• If the MSB is a 0, the result is positive and it is in true binary form.  

• If the MSB is a 1 (carry in or no carry at all) the result is negative and is in its 2‘s 

complement form. Take its 2‘s complement to find its magnitude in binary. 

 

Example:  



Subtract 14 from 46 using 8-bit 2‘s complement arithmetic: 

+14 =   00001110  

-14 =   11110010 2‘s complement of 14 

+46 =    00101110  

-14 =  +11110010 2‘s complement form of 14 
___ ____________  

-32 (1)00100000 ignore carry 

 

Ignore carry and the MSB is 0. So, the result is positive and is in normal binary 

form. So the result is +00100000 = +32. 

Example: Add -75 to +26 using 8-bit 2‘s complement arithmetic 

+75 =  01001011  
-75 = 10110101 2‘s complement of 75 

+26 =   00011010  
-75 = +10110101  

___ ____________  
-49    11001111 No carry 

                    No carry and MSB is 1. So the result is negative and is in 2‘s complement form.  

                   The magnitude is 2‘s complement of 11001111. i.e., 00110001 = 49. So result is -49 

 

1’s compliment arithmetic:  
• In 1‘s complement subtraction, add the 1‘s complement of the subtrahend to the minuend.  

• If there is a carryout, bring the carry around & add it to the LSB called the end around 
carry.  

• Look at the sign bit (MSB). If this is a 0, the result is positive and a true binary number.  

• If the MSB is a 1 (carry or no carry), the result is negative and in complement form. Take its 
1‘s complement to get the magnitude in binary. 

 

Example:  Using 8-bit 1‘s complement  

 

    Subtract 14 from 25         ADD -25 to +14 

     25 =     00011001 +14 =   00001110 

                          -14 =     11110001  -25 = +11100110 
     __   __________ ___ ___________ 

   +11  (1)00001010  -11       11110100 

           +1   

  ____________ No carry and MSB = 1 

       00001011 Result is negative  and in 1’s complement form 
    MSB is a 0 so result is positive (true binary) 
 
Compliment Arithmetic Advantage: 

Subtraction is also performed by addition. Instead of subtracting one number from other the 

compliment of the subtrahend is added to minuend. 



 

Codes 

The digital data is represented, stored and transmitted as group of binary bits. This group is also 

called as binary code. The binary code is represented by the number as well as alphanumeric 

letter. 

Advantages of Binary Code 

Following is the list of advantages that binary code offers. 

• Binary codes are suitable for the computer applications. 

• Binary codes are suitable for the digital communications. 

• Binary codes make the analysis and designing of digital circuits if we use the binary 

codes. 

• Since only 0 & 1 are being used, implementation becomes easy. 

Classification of codes 

 

The codes are broadly categorized into following four categories. 



• Weighted Codes 

• Non-Weighted Codes 

• Binary Coded Decimal Code 

• Alphanumeric Codes 

• Error Detecting Codes 

• Error Correcting Codes 

 

Weighted Codes 

Weighted binary codes are those binary codes which obey the positional weight principle. Each 

position of the number represents a specific weight. Several systems of the codes are used to 

express the decimal digits 0 through 9. In these codes each decimal digit is represented by a 

group of four bits. 

 

 

Non-Weighted Codes 

In this type of binary codes, the positional weights are not assigned. The examples of non-

weighted codes are Excess-3 code and Gray code. 

Excess-3 code 

The Excess-3 code is also called as XS-3 code. It is non-weighted code used to express decimal 

numbers. The Excess-3 code words are derived from the 8421 BCD code words adding (0011)2 

or (3)10 to each code word in 8421. The excess-3 codes are obtained as follows − 

 

 

 



 

 

 

 

Example: 

 

Gray Code 

• It is the non-weighted code and it is not arithmetic codes. That means there are no 

specific weights assigned to the bit position. 

• It has a very special feature that, only one bit will change each time the decimal number 

is incremented as shown in fig. As only one bit changes at a time, the gray code is called 

as a unit distance code. The gray code is a cyclic code. Gray code cannot be used for 

arithmetic operation. 



 

 

 

Application of Gray code 

• Gray code is popularly used in the shaft position encoders. 

• A shaft position encoder produces a code word which represents the angular position 

of the shaft. 

Binary Coded Decimal (BCD) code 

In this code each decimal digit is represented by a 4-bit binary number. BCD is a way to express 

each of the decimal digits with a binary code. In the BCD, with four bits we can represent 

sixteen numbers (0000 to 1111). But in BCD code only first ten of these are used (0000 to 

1001). The remaining six code combinations i.e. 1010 to 1111 are invalid in BCD. 

 

Advantages of BCD Codes 

• It is very similar to decimal system. 

• We need to remember binary equivalent of decimal numbers 0 to 9 only. 

Disadvantages of BCD Codes 

• The addition and subtraction of BCD have different rules. 



• The BCD arithmetic is little more complicated. 

• BCD needs more number of bits than binary to represent the decimal number. So BCD is 

less efficient than binary. 

Alphanumeric codes 

A binary digit or bit can represent only two symbols as it has only two states '0' or '1'. But this is 

not enough for communication between two computers because there we need many more 

symbols for communication. These symbols are required to represent 26 alphabets with capital 

and small letters, numbers from 0 to 9, punctuation marks and other symbols. 

The alphanumeric codes are the codes that represent numbers and alphabetic characters. Mostly 

such codes also represent other characters such as symbol and various instructions necessary for 

conveying information. An alphanumeric code should at least represent 10 digits and 26 letters 

of alphabet i.e. total 36 items. The following three alphanumeric codes are very commonly used 

for the data representation. 

• American Standard Code for Information Interchange (ASCII). 

• Extended Binary Coded Decimal Interchange Code (EBCDIC). 

• Five bit BCD Code. 

ASCII code: ASCII code is a 7-bit code whereas EBCDIC is an 8-bit code. ASCII code is more 

commonly used worldwide while EBCDIC is used primarily in large IBM computers. 

Sequential Code: These are those codes in which each succeeding code is 1 binary number 

greater than the preceding code. This property is used for mathematical manipulation of data. For 

ex:- BCD And Excess-3 Code.  

Self-complementary Code: A code is said to be self-complementary if the code for 9’s 

complement of N i.e. 9-N can be obtained by interchanging all 0s and 1s.  

➢ Decimal 9 is the complement of code for 0, 8 for 1, 7 for 2 and so on.  

➢ For a code to be self complementing, the sum of all its weights must be 9. Digit. 8421 

and 5421 codes are not self complementing codes whereas 5211, 2421, 3321, 4321 are 

self complementing.  

➢ In general, a code is self-complementary if we produce a code by taking the first 

complement of the digit which is same as 9’s complement of the number. 



Cyclic codes:  

• Cyclic codes are those in which each successive code word differs from the preceding 

one in only one bit position.  

• They are also called unit distance codes  

• Example: gray code Reflective Code: Example : Gray code 

Binary–Gray Code Conversion A given binary number can be converted into its Gray code 

equivalent by going through the following steps:  

• Begin with the most significant bit (MSB) of the binary number. The MSB of the Gray 

code equivalent is the same as the MSB of the given binary number.  

• The second most significant bit, adjacent to the MSB, in the Gray code number is 

obtained by adding the MSB and the second MSB of the binary number and ignoring the 

carry, if any. That is, if the MSB and the bit adjacent to it are both ‘1’, then the 

corresponding Gray code bit would be a ‘0’.  

• The third most significant bit, adjacent to the second MSB, in the Gray code number is 

obtained by adding the second MSB and the third MSB in the binary number and 

ignoring the carry, if any. 

• The process continues until we obtain the LSB of the Gray code number by the addition 

of the LSB and the next higher adjacent bit of the binary number.  

The conversion process is further illustrated with the help of an example showing step-by-step 

conversion of binary code 1011 into its Gray code equivalent:  

Gray code 1- - - Binary 1011  

Gray code 11- - Binary 1011  

Gray code 111- Binary 1011 

Gray code 1110 

 

 

 

 

 

 

 

 

 



Basic logic operations NOT, OR, AND: 
Binary logic consists of binary variables and logic operations. Each binary variable consists of 
two states called logic ‘0’ and logic ‘1’. There are 3 basic logical operations: 
AND,OR,NOTand derived operations are NAND, NOR,X-OR, X-NOR. 

 

AXIOMS:  
Axioms or Postulates are a set of logical expressions without proof. Each axiom can be 

interpreted as the outcome of an operation performed by a logic gate. 
 

AND(A.B=C) OR(A+B=C) NOT(A’=B) 

0.0=0 0+0=0            1’= 0 

0.1=0 0+1=1      0’ = 1 

1.0=0 1+0=1  

1.1=1 1+1=1  

 

LOGIC GATES:  

Logic gates are fundamental building blocks of digital systems. Logic gateproduces one 

output level when some combinations of input levels are present and a different output level 

when other combination of input levels is present. Based on the axioms there 3 basic types of 

logic gates were available which are indicated by AND, OR, NOT. 

The interconnection of gates to perform a variety of logical operation is called 

LogicDesign. Inputs & outputs of logic gates can occur only in two levels i.e., 1,0 or High, Low 

or True ,False or On , Off.  

A table which lists all the possible combinations of input variables & the corresponding 

outputs is called a Truth Table. It shows how the logic circuits output responds to various 

combinations of logic levels at the inputs. 

Level Logic, a logic in which the voltage levels represent logic 1 & logic 0.Level logic 

may be Positive Logic or Negative Logic. 

 In PositiveLogic the higher of two voltage levels represent logic 1 & Lower of two 

voltage levels representlogic 0.In Negative Logic the lower of two voltage levels represent logic 

1 & higher of two voltage levels represent logic 0. 

Ex: 

In TTL (Transistor-Transistor Logic) Logic family voltage levels are +5V and 0V.Logic 1 
represent +5Vand Logic 0 represent 0V. 
 
AND Gate: 

It is represented by “.”(dot) It has two or more inputs but only one output. The output 

assume the logic 1 state only when each one of its inputs is at logic 1 state. The output assumes 

the logic 0 state even if one of its inputs is at logic 0 state. The AND gate is also called an All or 

Nothing gate. 

Boolean Expression:   A AND B,     Y=A.B 

 

 

 

 



 
 
 

 

 

 

                           Logic Symbol Truth Table 
 
 
OR Gate: 

 

It is represented by “+”(plus). It has two or more inputs but only one output. The output assumes 

the logic 1 state only when one of its inputs is at logic 1 state. The output assumes the logic 0 

state even if each one of its inputs is at logic 0 state. The OR gate is also called an any or All 

gate. Also called an inclusive OR gate because it includes the condition both the inputs can be 

present. 
 
 
 
 
 
 
 
 

Logic Symbol                Truth Table 
 

Boolean Expression:A OR B,  A+B=Y 

 

NOT Gate:  
It is represented by “-“(bar).It is also called an Inverter or Buffer. It has only one 

input and one output. Whose output always the compliment of its input.  Theoutput assumes 
logic 1 when input is logic 0 & output assume logic 0 when input is logic 1. 
 

Logic Symbol 
 
 
 
 
 
 
Truth table: 
 

     A     X 
     1     0 
     0     1 

 

 

• Logic circuits of any complexity can be realized using only AND, OR , NOT gates. 
Using these 3 called AND-OR-INVERT i.e, AOI Logic circuits. 

 

 



The Universal Gates: 

 

The universal gates are NAND, NOR. These gates are called universal gates because any 

Boolean logic function including basic operations(AND, OR, INVERT) can be implemented 

using NAND and NOR gates. More over AOI logic can be easily converted to NAND logic or 

NOR logic. 
 
NAND Gate:It is combination of AND gate followed by NOT gate 
 
Boolean Expression: 𝑌 = (𝐴. 𝐵)̅̅ ̅̅ ̅̅ ̅̅  
 

 

NAND assumes Logic 0 when each of inputs assumes logic 1. 
 

Logic Symbol 
 
 
 
 

 

Truth table 
 
 
 
 
 
 
 
 
 

Bubbled OR gate: The output of this is same as NAND gate. 
 

Bubbled OR gate is OR gate with inverted inputs. 
 

𝑌 = �̅� + �̅� =  (𝐴𝐵) 
NAND gate as an Inverter: 
 

All its input terminals together & applying the signal to be inverted to the common 

terminal by connecting all input terminals except one to logic 1 & applying the signal to be 

inverted to the remaining terminal. It is also called Controlled Inverter. 
 
 
 
 

 

Bubbled NAND Gate: The output of bubbled NAND gate is same as OR gate  

 
 

 

 



NOR Gate: 
 

NOR gate is NOT gate with OR gate. i.e, OR gate is NOTed. 
 

Boolean expression:𝑌 = (𝐴 + 𝐵)̅̅ ̅̅ ̅̅ ̅̅ ̅̅  

Logic SymbolLogic symbol with OR and NOT 

 
 
 
 

  
 
           Truth Table: 

 

A  B  Y 

0  0  1 

0  1  0 

1  0  0 

1  1  0 

   

Bubbled AND gate: 

 

It is AND gate with inverted inputs. The AND gate with inverted inputs is called a bubbled 

AND gate. So a NOR gate is equivalent to a bubbled and gate. A bubbled AND gate is also 

called a negative AND gate. Since its output assumes the HIGH state only when all its inputs are 

in LOW state, a NOR gate is also called active-LOW AND gate. 

Output Y is 1 only when both A & B are equal to 0.i.e, only when both A‘ and B‘ are equal 

to 1.NOR can also realized by first inverting the inputs and performing AND operation those 

inverted inputs. 
 

Logic Symbol 
 
  
 
 

 

Truth table: 

 

 

 

 

 

 

 

 

Inputs Inverted Output 

A B Inputs Y 

  A‘ B‘  

0 0 1 1 1 

0 1 1 0 0 

1 0 0 1 0 

1 1 0 0 0 



NOR gate as an inverter: 

 

is tying all input terminals together & applying the signal to be inverted to the common 

terminals or all inputs set as logic 0 except one & applying signal to be inverted to the remaining 

terminal. 
 
 
 
 
 
 
 

 

Neither bubbled NOR Gate: is AND gate. 
 
 
 
 

 

 

 

The Exclusive OR (X-OR) gate: 
 
 
It has 2 inputs& only 1 output. It assumes output as 1 when input is not equal called anti-
coincidence gate or inequality detector. 
 
             Logic Symbol 
 
 
 
 
 
        Truth table: 
 
 
 
 
 
The high outputs are generated only when odd number of high inputs is present. This is why x-or 
function also known as odd function. 
 
 
 
 
 
 
 
 
 

 

 

 

A B Y 

0 0 0 

0 1 1 

1 0 1 

1 1 0 



The X-OR gate using AND-OR-NOT gates: 
 
 
 
 
 
 

 

 

 

 

X-OR gate as an Inverter:  
By connecting one of two input terminals to logic 1 & feeding the sequence to be 

inverted to other terminal 
 
 
 
 

Logic Symbol 

 

X-OR gate using NAND gates only: 
 
 
 
 
 
 
 
 
 
 
 

 

X-OR gate using NOR gates only: 
 
 
 
 
 
 
 
 
 
 
 
 

 

The EX-NOR Gate:  
It is X-OR gate with a NOT gate.It has two inputs & one output logic circuit. It assumes output 
as 0 when one if inputs are 0 and other 1.It can be used as an equality detector because it outputs 
a 1 only when its inputs are equal. 
 

 

 

 



Proof: A ʘ  B = (AB)’ 

                       = (AB’+A’B)’ 

                       = (A’+B).(A+B’) 

                       = AA’+A’B’+AB+BB’ 

                       = AB+A’B’ 
 
 
  
  
  
  
 
 

 

 

 

 

Boolean theorems: 

Boolean algebra: 

 

Switching circuits called Logic circuits, gate circuits & digital circuits. Switching 
algebra called Boolean Algebra. Boolean algebra is a system of mathematical logic. It is an 
algebraic system consisting of the set of element (0,1) two binary operators called OR & AND 
& One unary operator NOT.  

  
A+A=A , A.A=A   because variable has only a logic value.  
 
Complementation Laws: 

Complement means invert(0’ as 1 & 1’ as 0) 
Law1:0’=1 
Law2:1’=0 

Law3:If A=0 then A’   =1  
  Law4:If A=1 then A’  =0  
  Law5: (A’)’  =A(double complementation law)  

 

AND laws: 

Law 1: A.0=0(Null law)  
Law 2:A.1=A(Identity law) 

Law 3:A.A=A 
Law 4:A.A’  =0  

 

OR laws: 

Law 1: A+0=A(Null  law)  
Law 2:A+1=1 

Law 3:A+A=A 
Law 4:A+  =0 

 

 

 

 

   
 

 Truth table: 
 

 Inputs Output  

  
 

  A B X= A     B 
 

  0 0 1 
 

  0 1 0 
 

  1 0 0 
 

Logic Symbol.  1 0 1 
 



Commutative laws: allow change in position of AND or OR variables.2 commutative laws 

Law 1: A+B=B+A  
Law 2: A.B=B.A 

 
A B A+B = B A B+A 

    

 A.B B.A 
 

0 0 0 
 

0 0 0 
    

  0 0 
 

0 1 1 
 

0 1 1 
    

  0 0 
 

1 0 1 
 

1 0 1 
    

  0 0 
 

1 1 1 
 

1 1 1 
    

  1 1 
 

           

 
 
 
 
 
 
 
 
 
 

Associative laws: This allows grouping of variables. It has 2 laws. 

 

Law 1: (A+B)+C=A+(B+C) =A OR B ORed with C 

 

This law can be extended to any no. of variables 

(A+B+C)+D=(A+B+C)+D=(A+B)+(C+D) 

 

 

 

 

 

 

Law

2: 

(A.

B).C

=A(

B.C) 

 
T
h

is law can be extended to any no. of variables 
(A.B.C).D=(A.B.C).D 
 
 
 
 
 
 
 
 

A B  C A+B (A+B)+C  A B  C B+C A+(B+C) 
 

0 0 0 0 0 
       

 0 0 0 0 0 
 

0 0 1 0 1 
       

 0 0 1 1 1 
 

0 1 0 1 1 
       

 0 1 0 1 1 
 

0 1 1 1 1 
       

 0 1 1 1 1 
 

1 0 0 1 1 
       

= 1 0 0 0 1 
 

1 0 1 1 1 
      

1 0 1 1 1 
 

 
 

1 1 0 1 1 
       

 1 1 0 1 1 
 

1 1 1 1 1 
       

 1 1 1 1 1 
 

            



 
 

    

A B  C BC A(BC) 
 

A B  C AB (AB)C  
 

      

0 0 0 0 0 
 

0 0 0 0 0  
 

   

= 0  0 1 0 0 
 

0  0 1 0 0 
 

      

0 1 0 0 0 
 

0 1 0 0 0  
 

      

0 1 1 1 0 
 

0 1 1 0 0  
 

      

1 0 0 0 0 
 

1 0 0 0 0  
 

      

1 0 1 0 0 
 

1 0 1 0 0  
 

      

1 1 0 0 0 
 

1 1 0 1 0  
 

      

1 1 1 1 1 
 

1 1 1 1 1  
 

            



Distributive Laws: 
This has 2 laws  
Law 1.A(B+C)=AB+AC 

This law applies to single variables.  
Ex:ABC(D+E)=ABCD+ABCE 

AB(CD+EF)=ABCD+ABEF 
 

 
 

 
 

 
 

 

 
 

 
 

 
 

 
 

 

 
 
 
Law 2.A+BC=(A+B)(A+C) RHF=(A+B)(A+C)  

=AA+AC+BA+BC 

=A+AC+AB+BC  
=A(1+C+B)+BC 

=A.1+BC  
=A+BC LHF 

 
 
 
 
 
 
 
 
 
 
 
 

 

 

 

 

 

 

A B  C BC A+BC 

0 0 0 0 0 

0 0 1 0 0 

0 1 0 0 0 

0 1 1 1 1 

1 0 0 0 1 

1 0 1 0 1 

1 1 0 0 1 

1 1 1 1 1 

A B  C B+C A(B+C) 

0 0 0 0 0 

0 0 1 1 0 

0 1 0 1 0 

0 1 1 1 0 

1 0 0 0 0 

1 0 1 1 1 

1 1 0 1 1 

1 1 1 1 1 

 A B  C AB AC AB+AC 
 

 0 0 0 0 0 0 
 

 0 0 1 0 0 0 
 

= 

0 1 0 0 0 0 
 

0 1 1 0 0 0 
 

 1 0 0 0 0 0 
 

 1 0 1 0 1 1 
 

 1 1 0 1 0 1 
 

 1 1 1 1 1 1 
 



 
 

Redundant Literal Rule(RLR): 
 
Law 1: A+ A’B=A+B  

LHF = 
(A+A’)(A
+B)  

=1.(A+B)  

=A+BRHF 
 

Performing OR operation of a variable with the AND of the compliment of that variable with 

another variable, is equal to the Performing OR operation of the two variables. 

 

 

 

 

 

 

 

 

 

 

 

Law 2: A (A’+B) = AB 

              LHF = A.A’ + AB 

                       = 0+AB 

                       =AB          RHF 
Performing AND operation of a variable with the OR of the complement of that variable 

with another variable, is equal to the performing AND operation of the two variables. 

 

 

 

A B  C A+B A+C (A+B)(A+C) 
 

0 0 0 0 0 0 
 

= 
0 1 1 1 0  

0 
 

0 1 0 1 0 0 
 

0 1 1 1 1 0 
 

1 0 0 0 1 0 
 

1 0 1 1 1 1 
 

1 1 0 1 1 1 
 

1 1 1 1 1 1 
 

       

A B A+B 
 

 A B B  A+  B   

   

0 0 0 
 

 0 0 0  0  
 

   

0 1 1 
 

 0 1 1  1 =  

  

1 1 1 
 

 1 0 0  1  
 

   

1 1 1 
 

 1 1 0  1  
 

       



 
       

A B A+B 
  

 A B A’+B  A(A’+B)    
 

        

0 0 0 
 

 

 0 0 1  0   
 

        

0 1 0 
 

 

 0 1 1  0   
 

        

1 1 0 
 

 

 1 0 0  0  =  

   

1 1 1 
  

 1 1 1  1    
 

             

Idempotent Laws:         
 

  Idempotent means same value. It has 2 laws.    
 

   Law 1=A.A=A      
 

This  law  statesperforming AND operation  of a  variable with itself is  equal to that variable 
only 
 

 

 

If A=0, then A.A=0.0=0=A  
If A=1, then A.A=1.1=1=A 

 

Law 2:   A+A=A 

 

This  law  states that  performing OR operation of a  variable with itself  is equal to thatvariable 

only. 
 
 
 

If A=0, then A+A=0+0=0=A 
If A=1, then A+A=1+1=1=A   

 

Absorption Laws:     
 

Law 1=A+A.B=A 
     

A B     A.B A+(A.B)  

 
 

= A(1+B) 
0 0 0 0 

 

0 1 0 0  

=A.1 
 

1 0 0 1  

=A 
 

1 1 1 1  

i.e.,   A+A. any term=A  

    
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 

Transposition Theorem:  

Law 2=A(A+B)=A     
 

A(A+B)=A.A+A.B     
 

A B + A(A+B) 
 

= A+AB  

0 0 0 0 
 

=A(1+B) 
 

= A.1 =A 0 1 1 0 
 

 1  0 1 1 
 

 1 1 1 1 
 



AB+ A‘C= 
(A+C)(A‘+B)  
RHS = (A+C)(A‘ +B) 

 
=AA‘ +CA‘ +AB+CB 

=0+ A‘C+AB+BC 

                                 =A‘C+AB+BC(A+A‘)  

=AB+ABC+ C+ BC =AB+ CLHS   
 

DeMorgan’s Theorem: 
It represents two of the most powerful laws in Boolean algebra 

Law 1: (A+B)‘  = A‘.B‘ 
 

This law states that the compliment of a sum of variables is equal to the product 
of their individual complements. 
 

LHS 
 
 
 
 
 
 

 

RHS 
 
 
 
 
 

 
 

NOR gate= Bubbled AND gate 

 
This can be extended to any variables. (A+B+C+D+-----) ‘=A‘B‘C‘D‘---- 
 
Law 2:  (AB)‘=A‘+B‘ 
 

Complement of the product of variables is equal to the sum of their individual components. 

 

 

 

Duality: 

 

In a positive Logic system the more positive of the two voltage levels is represented by a 

1 & the more negative by a 0. In a negative logic system the more positive of the two voltage 

levels is represented by a 0 & more negative by a 1. This distinction between positive &negative 

logic systems is important because an OR gate in the positive logic system becomes an AND 

gate in the negative logic system &vice versa. Positive & Negative logics give a basic duality in 

Boolean identities. Procedure dual identity by changing all + (OR) to. (AND) & complementing 

all 0‘s &1‘s. Once a theorem or statement is proved, the dual also thus stands proved called 

Principle of duality. 
 
 
Relations between complement 
 
(A+B+C+….) ‘= A’. B’.C’ …. 
 
(A.B.C.….) ‘= A’ + B’ + C’ + …. 
 
 
Duals: 

 



     

 Expression Dual 

 0=1 1=0 

 0.1=0 1+0=1 

 0.0=0 1+1=1 

 1.1=1 0+0=0 

 A.0=0 A+1=1 

 A.1=A A+0=A 

 A.A=A A+A=A 

 A.A’  =0 A+A’  =1 

 A.B=B.A A+B=B+A 

 A.(B.C)=(A.B).C A+(B+C)=(A+B)+C 

 A.(B+C)=(AB+AC) A+BC=(A+B)(A+C) 

 A(A+B)=A A+AB=A 

 A.(A.B)=A.B A+A+B=A+B 

 (A+B)(A’+C)(B+C)=(A+B)( A’+C) 

AB+  A'C+BC=AB+ 

A'C 

 

 

 

 

 

 

 

 

Standard SOP and POS forms 

Reducing Boolean Expressions: 
 
Procedure: 
 
1. Multiply all variables necessary to remove parenthesis 

2.  Look for  identical  terms.  Only  one of those  terms  to  be  retained  & other  
dropped. 
 
Ex: AB+AB+AB+AB=AB 

3. Look for a variable & its negation in the same term. This term can be dropped 1 

Ex: AB +AB = AB ( +1)=AB .1=AB  
 
4.Look for pairs of terms which have the same variables, with one or more variables 

complemented. If a variable in one term of such a pair is complemented while in the second term 

it is not then such terms can be combined into a single term with variable dropped.  

Ex: AB    +AB  D= AB  ( +D)=AB  .1=AB   
 
Boolean functions & their representation: 
 

A function of n Boolean variables denoted by f(x1,x2,x3------xn) is another variable 

denoted by & takes one of the two possible values 0 & 1. 

The various ways of representingthe given function is 
 
1.  Sum of Product(SOP) form:It is called the Disjunctive NormalForm(DNF) 

 Ex: f(A,B,C)= A.B’+ C’ 

 

2.  Product of Sums (POS) form:It is called the Conjunctive Normal Form(CNF).This is 

implemented using Consensus theorem. 



Ex:f(A,B,C)=( A+B)(B+C)  

 

3. Truth Table form:The function is specified by listing all possible combinations of values  

assumed by the variables & the corresponding values of the function. 

Ex: Truth table for f(A,B,C) = (B+ C)  
Decimal Code A B C F(A,B,C) 

0 0 0 0 0 

1 0 0 1 1 

2 0 1 0 1 

3 0 1 1 1 

4 1 0 0 0 

5 1 0 1 1 

6 1 1 0 0 

7 1 1 1 0  
 
4. Standard Sum of Products form called Disjunctive Canonical form (DCF) & also called  
Expanded SOP form or Canonical SOP form.  
            Ex: f(A,B,C)= A.B.C’ +A.B.C  
 
A product term contains all the variables of the function either in complemented or 
uncomplemented form is called a minterm. A minterm assumes the value 1 only for one 

combination of the variables. An n variable function can have in all 2
n
 minterms to 1 is the 

standard sum of products form of the function. Minterms are denoted as m0, m1,m2….. Here 

suffixes are denoted by the decimal codes. 
 
Ex: F(A,B,C)=m1+m2+m3 then m1=A’B’C , m2=AB’C, m3=A’BC 

 

  The function in DCF is listing the decimal codes of the minterms for which F=1 
 

F(A,B,C)=∑m(1,2,3,). 

 

5. Standard Product of Sums form: It is called as Conjunctive Canonical form (CCF). It is also 
called Expanded POS or Canonical POS. 
 
Ex: If  A=0,B=0, C=0 and the term=0 

Thus function f (A, B, C) = (A’+B’+C’).(A+B’+C’).(A+B+C’) 

 

A sum term which contains each of the n variables in either complemented form is called a 
Maxterm. A maxterm assumes the value ‘0‘only for one combination of the variables. The most 

there are 2
n
 maxterms. It is represented as M0,M1,M2…... Here the suffixes are decimal codes. 

 

The CCF of f(A,B,C)=M0.M4.M6 
 

f(A,B,C)=πM(0,4,6,7)  where π or ^ represents the product of all maxterms. 
 

Expansion of a Boolean expression in SOP form to the standard SOP form: 
 

1. Write down all the terms.  
2. If one or more variables are missing in any term.Expand that term by multiplying it with  

the sum of each one of the missing variable and its complement.   
3. Drop out redundant terms.  

 

Expansion of a Boolean expression in POS form to standard POS form: 
 

1.  Write down all the terms. 
 

2.If one or more variables are missing in any sum term. Expand that term by adding the 
product of each of the missing variable and its complement.  

3.  Drop out redundant terms.  



 

Conversion between Canonical forms: 

The complement of a function expressed as the sum of minterms equals the sum of minterms 

missing from the original function is expressed by those minterms that make the function equal 

to 1 for those minterms that make the function equal to 0. 
 

Ex: f(A,B,C)=∑m(0,2,4,6,7) 

Complement isf’(A,B ,C ) =∑m(1,3,5).=m1+m3+m5 

Complement of deMorgan’s theorem: f= (m1 + m3 + m5) then f’= M1.M3.M5 

 

1=Mj, the maxterm with subscript j is a complement of the minterm with the same subscript j and 

vice versa. To convert one canonical form to another, interchange the symbol ∑ and π, and list 

those numbers missing from the original form. 

 

Two level NAND – NAND and NOR-NOR realizations: 

 

Boolean expressions can be realized as hardware using logic gates. Conversely, hardware can be 

translated into Boolean expressions for the analysis of existing circuits. 
 
1.  Converting Boolean Expressions to Logic:To convert, start with the output & work towards 

the input.Assume the expression (AB)’+A+(B+C)’ is to be realized using AOI logic. Start with 

this expression. Since it is three terms, it must be the output of a three-input OR gates. So, draw 

an OR gate with three inputs as 
 
 
 
 
 

 

(AB)‘ is the output of an inverter whose inputs is AB and (B+C)‘ must be the output of an 
inverter whose input is B+C. so, those two inverters are as 
 
 
 
 

 

 

 

 

Now AB must be output of a two-input AND gate whose inputs are A and B. And B+C must be 

the output of a two-input OR gate whose inputs are B and C. so, an AND gate and an OR gate 

are as 

 
 
 
 
 
 
 
 
 
 
 
 

 

2.  Converting Logic to Boolean Expressions: 
 
To convert logic to algebra, start with the input signals and develop the terms of the Boolean 
expression until the output is reached. 

 

Since NAND logic and NOR logic are universal logic circuits which are first computed and 

converted to AOI logic may then be converted to either NAND logic or NOR logic depending on 

the choice. The procedure is 



 
1. Draw the circuit in AOI logic  

 
2. If NAND hardware is chosen, add a circle at the output of each AND gate and at the 

inputs to all the AND gates.  
 

3. If NOR hardware is chosen, add a circle at the output of each OR gate and at the inputs to 
all the AND gates  

 
4. Add or subtract an inverter on each line that received a circle in steps 2 or 3 so that the 

polarity of signals on those lines remains unchanged from that of the original diagram   
5. Replace bubbled OR by NAND and bubbled AND by NOR Eliminate double inversions. 

 

Ex:  Now consider a Boolean function to demonstrate the procedure for converting into      

        NAND gates: 

                        Y = A + (B′ + C) (D′E + F) 

 

 

 

Step 1:We first draw the logic diagram using basic gates as shown in figure before 

 

 

 

 

 

 

 

 

 

 

 

Step 2 and 3: 

Convert all AND 

gates to NAND using AND-invert symbol and all OR gates to  

                      NAND using Invert-OR symbol. 

 

 

 

 

 

 

 

 

 

 

 

Step 4:  It is 

very clear that only two inputs D′ and E are emerging in the original forms at the output. Rest 

inputs A, B′, C and F are emerging as the complement of their original form. 

 

 

 

 

 

 

 

 

 

 

 



 

 

 

 

Step 5: Now because both the symbols AND-invert and invert-OR represent a NAND gate. 

 

 

 

 

 

 

 

Ex:  

Now consider a 

Boolean function to 

for converting 

into NOR gates: 

 Y = ((A+B).(C+D))E+(F+G’) 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Convert all OR gates to NOR using OR-invert and all AND gates to NOR using invert AND 

symbol. Convert both symbols OR-invert and invent-AND represent a NOR gate 

1 MINIMIZATION OF LOGIC FUNCTIONS USING BOOLEAN THEOREMS 

2 THE KEYS TO 

BOOLEAN FUNCTION 

MINIMIZATION LIE IN THE THEOREMS INTRODUCED FOR BOOLEAN ALGEBRA. PARTICULARLY THE 

THEOREMS SHOWN BELOW ARE USEFUL. 

(a) A + AB = A                          (b) A (A + B) = A  

(c) A + A′B = A + B                  (d) A (A′ + B) = AB 

(e) AB + AB′ = A                      (f) (A + B) (A + B′) = A  

 

Ex:     Minimize F = CD + AB′C + ABC′ + BCD 

3  

4 A+AB=A 

F = CD + AB′C + ABC′ 



Unit – II 
 

Objectives: 

• To familiarize with K-map method 

• To understand various combinational logic circuits. 

 

Syllabus: 

Combinational Logic Circuits: The Map Method(upto 4 Variables), Don't care 

conditions, design procedure, adders, subtractors, 4-bit adder-subtractor circuit, BCD 

adder, carry look ahead  adder, decoders and encoders, multiplexers, demultiplexers.  

 

Outcomes: 

 

Students will be able to 

 

• Determine the minimized Boolean function using K-maps  

• Design adders and subtractors. 

• Understand 4-bit adders like BCD adder and look-a-head carry adder. 

• Understand other combinational circuits like decoder, encoder, multiplexer, 

demultiplexer. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Learning Material 

Minimization of switching functions using K (Karnaugh) -Maps 



• The K-map is a diagram made up of squares.  

• Each square represents one minterm. Since any function can be expressed as a sum of 

minterms, it follows that a Boolean function can be recognized from a map by the area 

enclosed by those squares, whose minterms are included in the operation. 

• By various patterns, we can derive alternative algebraic expression for the same operation, 

from which we can select the simplest one. (One that has minimum number of literals). 

• Construct the K-map as discussed above. Enter 1 in those squares corresponding to the 

minterms for which function value is 1. Leave empty the remaining squares. Now in 

following steps the square means the square with a value 1. 

• Examine the map for squares that cannot be combined with any other squares and form group 

of such single squares. 

• Now, look for squares which are adjacent to only one other square and form groups 

containing only two squares and which are not part of any group of 4 or 8 squares. A group 

of two squares is called a pair. 

• Next, group the squares which result in groups of 4 squares but are not part of an 8-squares 

group. A group of 4 squares is called a quad. 

• Group the squares which result in groups of 8 squares. A group of 8 squares is called octet. 

• Form more pairs, quads and outlets to include those squares that have not yet been grouped, 

and use only a minimum no. of groups. There can be overlapping of groups if they include 

common squares.  

• Omit any redundant group. 

• Form the logical sum of all the terms generated by each group. 

• Using Logic Adjacency Theorem we can conclude that, 

✓ a group of two squares eliminates one variable, 

✓ a group of four squares eliminates two variable and a group of eight squares 

eliminates three variables. 

 

 

There are two, three and four variable K maps. 

 

Two Variable K-Map: 

• For two variables there are four minterms and these can be conveniently placed on a 'map' as 

shown in figure below 
 

 

 

 



• The map consists of a square divided into four cells, one for each of the minterms.  

• The possible values of the variable A are written down the left hand side of the map, labeling 

the corresponding rows of the map, while the possible values of the variable B are written 

along the top of the map, labeling the corresponding columns of the map.  

• Hence, the top left-hand cell represents the minterm where A=0 and B=0, i.e. the minterm 

AB. 

•  The bottom right-hand cell represents the minterm AB where A=1and B=1. 

• The process of simplifying a Boolean function with the aid of a K-map is simplya process of 

finding adjacencies on the function plot.  

• This is best explained with the aidof a very simple example.  

• Suppose that it is required to simplify the Boolean function f = A'B‘+ AB' + AB.  

• Using Boolean algebra alone, it can be readily found that F=B(A' + A) + AB = AB + B' 

• However, suppose that F is plotted on a 2-variable K-map, as in Figure below. 

 

 

 

 

 

 

 

• The next stage of the simplification process is to group together adjacent cells containing 1's. 

(In this context, note carefully that 'adjacent' means 'horizontally or vertically', not 

'diagonally'.)  

• Therefore, the bottom two cells, corresponding to A alone, may be grouped together.  

• Similarly, the two left-hand cells, corresponding to B alone, may also be grouped together, as 

indicated in the figure above. 

• The final stage is to write down the final simplified expression for the function obtained from 

the groupings thus identified. In this case, therefore, f = A + B’. 

 

Three Variable K-Map: 

• If the following Boolean function F (A, B, C) = Σ (3, 4, 6, 7).Then it is represented in k-map 

as shown in figure below: 

 

 

 

 

 

 

 

Step 1. m3 is adjacent to m7. It forms a group of two squares and is not a part of any group of 4 

or 8 squares. Similarly m6 is adjacent to m7. So this is second group (pair) that is not a part of 

any group of 4 or 8 squares. Now according to new definition of adjacency m4 and m6 are also 

adjacent and form a pair. Moreover, this pair (group) is not a part of any group of 4 or 8 squares. 

Step 2. All the 1's have already been grouped.  

Step 3. The pair formed by m6 m7 is redundant because m6 is already covered in pairm4 m6 and 

m7 in pair m3 m7. Therefore, the pair m6 m7 is discarded. 



Step 4. The terms generated by the remaining two groups are ‘OR' operated togetherto obtain the 

expression for F as follows: 
 

 

 

 

 

 

 

 

 

 

 

 

 

Four Variable K-Map: 

• If the following Boolean functionF(w, x y, z) = Σ (0, 2, 3, 6, 7, 8, 10, 11, 12, 15), then the K-

map is given in the figure below 

  

 

 

 

 

 

 

 

 

 

• Minterm 8 and 12. From a pair. 

• Minterms 0, 2, 8 and 10 form I quad. 

• Minterms 3, 7, 11, 15 form II quad. 

• Minterms 2, 3, 6, 7 form III quad. 

• Therefore the final minimized expression is given by 

 

 

 

 

 

Don't care map entries: 

• The occurrence of particularinput combinations will have no effect onthe output, then those 

inputs are known as don't cares. 

• That is a d or a × (cross) is entered into each square to signify “don'tcare” MIN/MAX terms. 

• Simplify the following Boolean function. F (A, B, C, D) = Σ (0, 1, 2, 10, 11, 14)&d (5, 8, 9) 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

 

 

 

 

• As shown in K-map in Figure above, by combining 1’s and d’s(Xs), three quads can be 

obtained. 

•  The X in square 5 is left free since it does not contribute in increasing the size of any 

group. Therefore, the 

o I Quad covers minterms 0, 2, 10 and d8 

o II Quad covers minterms 10, 11 and d8, d9. 

o III Quad covers minterms 0, 1 and d8, d9. 

o A pair covers minterms 10 and 14. 

o Therefore the final expression is 

  

 
 

 

 

 

 

Combinational circuit consists of logic gates whose outputs at anytime are determined directly 

from the present combination of inputs without regard to previous inputs. 

Combinational circuit is a combination of different gates.  

For example: encoder, decoder, multiplexer and de-multiplexer etc. are some combinational 

circuits. 

 Some of the characteristics of combinational circuits are following: 

• The output of combinational circuit at any instant of time depends only on the levels 

present at input terminals. 

• The combinational circuit does not use any memory. The previous state of input does 

not have any effect on the present state of the circuit. 

• A combinational circuit can have a n number of inputs and m number of outputs. 

 

Block diagram 

 

 

 

            a 

         b 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

Combinational 
circuit 



 

 

 

 

Classification of combinational Logic Circuits: 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Design procedure of combinational Logic circuit: 

1. The problem is stated 

2. The number of available input variables and required output variables is determined  

3. The input and output variables are assigned letter symbols 

4. The truth table that defines the required relationship between inputs and outputs is 

derived 

5. The simplified Boolean function for each output is obtained 

6. The logic diagram is drawn. 

 

Adders: 

Digital computers perform various arithmetic operations. The most basic arithmetic operation 

is the addition of two binary digits. 

 

Different types of adders are discussed below: 

 

Half Adder 

Half adder is a combinational logic circuit that performs the addition of two bits. 

Half adder circuit needs two binary inputs and two binary outputs. 

The input variables designate the augend and addend bits, the output variables produce the sum 

and carry. 

 

Block diagram 

 

  A      Sum(S) 

   

 

  B      Carry(c) 
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Data Transmission 

 
Code converters 
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Subtractors, 
Comparators 
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BCD to Seven 
Segment Display 

 
 
 

Half adder 



 

Truth Table 

 

Inputs Outputs 

A B Sum(s) Carry(c) 

0 0 0 0 

0 1 1 0 

1 0 1 0 

1 1 0 1 

 

Circuit Diagram: 

 
Logic Equations: 

Sum(s)= A⊕B;    Carry(c)=AB; 

 

Full Adder 

The combinational circuit that performs the addition of three bits (two significant bits and 

previous carry) is called full adder. It consists of three inputs and two outputs. Two significant 

bits represented as A and B and the third input Cin represents the carry from the previous lower 

significant position. The two outputs are Sum (s) and Carry(c). 

 

Block diagram: 

 

 

 

 

          A         Sum(s) 

 

 

                    B         Carry(c ) 

 

 

                 Cin 

 

 

 

Truth Table 

 

Inputs outputs 

A B Cin Sum Carry 

0 0 0 0 0 

0 0 1 1 0 

 
 

Full Adder 



0 1 0 1 0 

0 1 1 0 1 

1 0 0 1 0 

1 0 1 0 1 

1 1 0 0 1 

1 1 1 1 1 

 

 

 

Circuit Diagram: 

 

 

 
 

Logic Equations: 

Sum(s)=A ⊕B⊕Cin 

Carry(c)=AB+BCin+ACin 

 

Full adder implementation using two halfadders and orgate: 

 

 
 

Logic Diagram: 

 
 

 

 

 

 



 

 

 

N-Bit Parallel Adder 

 

The Full Adder is capable of adding only two single digit binary number along with a carry 

input. But in practice we need to add binary numbers which are much longer than just one bit. 

To add two n-bit binary numbers we need to use the n-bit parallel adder. It uses a number of 

full adders in cascade. The carry output of the previous full adder is connected to carry input of 

the next full adder. 

 

4 Bit Parallel Adder 

 

In the block diagram, A0 and B0 represent the LSB of the four bit words A and B. Hence Full 

Adder-0 is the lowest stage. Hence its Cin has been permanently made 0 .The rest of the 

connections are exactly same as those of n-bit parallel adder is shown in fig. The four bit 

parallel adder is a very common logic circuit. 

 

Block diagram: 

 

 

 
 

Half  Subtractor 

 

A Half subtractor is a combinational circuit that subtracts two bits and produces their 

difference. It produces the difference between the two binary bits at the input and also 

produces an output Borrow to indicate if a1 has been borrowed. In the subtraction A−B, A is 

called as Minuend bit and B is called as Subtrahend bit. 

 

  A      Difference(D) 

   

 

  B      Borrow(B) 

 

 

 

Truth Table 

 

Inputs Outputs 

A B Difference(D) Borrow(B) 

0 0 0 0 

 
 
 

Half Subtractor 



0 1 1 1 

1 0 0 1 

1 1 0 0 

 

 

 

 

Logic Diagram: 

 

 
 

 

Logic Equations: 

 

difference(D)= A⊕B;    Borrow(B)=A1B; 

 

Full Subtractor: 

The disadvantage of a half subtractor is overcome by full subtractor. The full subtractor is a 

combinational circuit with three inputs A, B, Bin and two output D and Bout. A is the 'minuend', 

B is 'subtrahend', C is the 'borrow' produced by the previous stage, D is the difference output 

and B is the borrow output. 

 

 

 

 

          A         Difference(D) 

 

 

                    B         Borrow(Bout) 

 

 

               Bin 

 

Truth Table 

Inputs outputs 

A B Bin D Bout 

0 0 0 0 0 

0 0 1 1 1 

0 1 0 1 1 

0 1 1 0 1 

1 0 0 1 0 

1 0 1 0 0 

1 1 0 0 0 

1 1 1 1 1 

 
 

Full Subtractor 



 

 

Circuit Diagram 

Logic Equations:  

 

              difference(D)=  A ⊕B⊕Bin 

 

4 Bit Parallel Subtractor 

 

The number to be subtracted B is first passed through inverters to obtain its 1's complement. 

The 4-bit adder then adds A and 2's complement of B to produce the subtraction. S3S2S1S0 

represents the result of binary subtraction A−B and carry output Cout represents the polarity of 

the result. If A>B then Cout=0 and the result of binary form A−B then Cout=1 and the result is 

in the 2's complement form. 

 

Block diagram  

 

 

 
 

N-Bit Parallel Subtractor 

 

The subtraction can be carried out by taking the 1's or 2's complement of the number to be 

subtracted. For example we can perform the subtraction A−B by adding either 1's or 2's 

complement of B to A. That means we can use a binary adder to perform the binary subtraction. 

 

4-Bit Adder-Subtractor Circuit 

 



 

 

 

 

 

 

 

 

 

 

 

This figure represents a 4-bit adder-subtractor circuit. Here the addition and subtraction 

operations are combined in to one circuit with one common binary adder. The mode input S 

controls the operation. 

When S=0, the circuit is an adder 

When S=1, the circuit is a subtractor 

Each XOR gate receives input S and one of the inputs of B. when S=0, we have B  0 = B. the 

full adder receives the value of B, the input carry is 0 and the circuit performs A+B. 

When S=1, we have B  1 = B' and C1=1. The B inputs are complemented and a 1 is added 

through the input carry. The circuit performs the operation A plus the 2's complement of B. 

 

 

BCD Adder 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The logic circuit that detects the necessary correction can be derived from the entries in the table. 

It is obvious that a correction is needed when the binary sum has an output carry K = 1. The 

other six combinations from 1010 through 1111 that need a correction have a 1 in position Z8. 

To distinguish them from binary 1000 and 1001, which also have a 1 in position Z8, we specify 

further that either Z 4 or Z2 must have a 1. The condition for a correction and an output carry 

can be expressed by the Boolean function 

                                  C = K + Z8Z4 + Z8Z2 

When C = 1, it is necessary to add 0110 to the binary sum and provide an output carry for the 

next stage. 

 



 

 

Look Ahead Carry Adder 

 

 The Figure shows the full adder circuit used to add the operand bits in the ith column; 

namely Ai & Bi and the carry bit coming from the previous column (Ci ). 

 

 

 

 

 

 

 

In this circuit, the 2 internal signals Pi and Gi are given by: 

 

Pi = Ai  Bi ……………………..(1) 

 

Gi  = Ai Bi …………………..……(2) 

 

The output sum and carry can be defined as : 

 

Si = Pi Ci ……………………(3) 

 

C i +1 = Gi  Pi C i …………(4) 

 

Gi is known as the carry Generate signal since a carry (Ci+1) is generated whenever Gi =1, 

regardless of the input carry (Ci). Pi is known as the carry propagate signal since whenever Pi =1, 

the input carry is propagated to the output carry, i.e., Ci+1. = Ci (note that whenever Pi =1, Gi =0). 

Computing the values of Pi and Gi only depend on the input operand bits (Ai & Bi) as clear from 

the Figure and equations. Thus, these signals settle to their steady-state value after the 

propagation through their respective gates.  

 

                     C1 = G0 + P0C0 

                     C2 = G1 + P1C1 = G1 + P1 (G0 + P0C0) = G1 + P1G0 + P1P0C0 

                     C3 = G2 + P2C2 = G2 + P2G1 + P2P1G0 + P2P1P0C0 C4  

                          = G3 + P3C3= G3 + P3G2 + P3P2G1 + P3P2P1G0 + P3P2P1P0C0 

 

In general, the ith carry output is expressed in the form Ci = Fi (P's, G's , C0). 

In other words, each carry signal is expressed as a direct SOP function of C0 rather than its 

preceding carry signal. 

Since the Boolean expression for each output carry is expressed in SOP form, it can be 

implemented in two-level circuits. 

The 2-level implementation of the carry signals has a propagation delay of 2 gates,  

 

The 4-bit carry look-ahead (CLA) adder consists of 3 levels of logic: 

 

 

 

 

 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Multiplexers: 

A digital multiplexer is a combinational circuit that selects binary information fron one of many 

input lines and directs it to a single output line. 

The selection of a particular input line is controlled by a set of selection lines. 

Normaliy there are 2n input lines and an selection lines whose bit combinations determine 

which input is selected. 

 

E is called the strobe or enable input which is useful for the cascading. It is generally an active 

low terminal that means it will perform the required operation when it is low. 

 

  Block diagram 

 

 
 

 

 

 

 



 

 

Multiplexers come in multiple variations 

• 2:1 multiplexer 

• 4:1 multiplexer 

• 16:1 multiplexer 

• 32:1 multiplexer 

 

2X1 Multiplexer: 

A 2 to 1 line multiplexer consists of 2 input lines and one select line and single output line. 

Block Diagram: 

                                         D0 

                                         D1 

                                                                                                                          Y 

                                          E 

 

                                         S 

               

 

Truth Table: 

 

 

Enable Select Output 

E S Y 

0 X 0 

1 0 D0 

1 1 D1 

           X=Don't Care 

 

 

Demultiplexers 

A demultiplexer performs the reverse operation of a multiplexer i.e. it receives one input and 

distributes it over several outputs. It has only one input, n outputs, m select input. At a time 

only one output line is selected by the select lines and the input is transmitted to the selected 

output line.  

 

Demultiplexer comes in multiple variations. 

• 1:2 demultiplexer 

• 1:4 demultiplexer 

• 1:16 demultiplexer 

• 1:32 demultiplexer 

 

Block diagram 

 

 

 

 

 

 

 
 

2x1 MUX 



 

 

Truth Table 

 

 
Decoder 

 

A decoder is a combinational circuit. It has n input and to a maximum= 2n outputs. Decoder is 

identical to a demultiplexer without any data input. It performs operations which are exactly 

opposite to those of an encoder. 

 

Block diagram 

 

 
Examples of Decoders are following. 

• Code converters 

• BCD to seven segment decoders Nixie tube decoders 

• Relay actuator 

 

2 to 4 Line Decoder 

The block diagram of 2 to 4 line decoder is shown in the fig. A and B are the two inputs where 

D3 through D0 are the four outputs. Truth table explains the operations of a decoder. It shows 

that each output is 1 for only a specific combination of inputs. 

 

Block diagram       Truth Table 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

Logic Circuit 

 
Encoder 

 

Encoder is a combinational circuit which is designed to perform the inverse operation of the 

decoder. An encoder has n number of input lines and m number of output lines. An encoder 

produces an m bit binary code corresponding to the digital input number. The encoder accepts 

an n input digital word and converts it into an m bit another digital word. 

 

Block diagram 

 

 
 

Examples of Encoders are following. 

• Priority encoders 

• Decimal to BCD encoder Octal to binary encoder 

• Hexadecimal to binary encoder 

 

Priority Encoder 

This is a special type of encoder. Priority is given to the input lines. If two or more input line 

are 1 at the same time, then the input line with highest priority will be considered. There are 

four input D0, D1, D2, D3 and two output Y0, Y1. Out of the four input D3 has the highest 

priority and D0 has the lowest priority. That means if D3=1 then Y1Y1=11 irrespective of the 

other inputs. Similarly if D3= 0 and D2=1 then Y1Y0=10 irrespective of the other inputs. 

 

Block diagram 

 



 
Truth Table 

 
 

Logic Circuit 

 

 
 

• Implement full adder circuit whose outputs are given as : S (x,y,z) = Σ (1,2,4,7) 

C(x,y,z) = Σ(3,5,6,7) with  a suitable decoder and external gates 

 



 

▪ Implement the function F(x,y,z) = m(1,2,6,7) x, and y should be connected with the 

same order to S1and S0respectively 

                                   

 

 

 

 

 

 

 

 

 

 

 

 

 

▪ Implementation of the Boolean function F (A, B, C, D) = ∑(1, 3, 4, 11, 12, 13, 14, 15) 

using 8 X 1 MUX 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 
 

Assignment-Cum-Tutorial Questions 
 

Section-A 

1. A full subtractor circuit requires ________. 

a) Two inputs and two outputs                                 b) Two inputs and three outputs 

c) Three inputs and one output                                 d)Three inputs and two outputs 

2. A de multiplexer has ________. 

a) One data input and a number of selection inputs, and they have several outputs 

b) One input and one output 

c) Several inputs and several outputs 

d) Several inputs and one output 

3. How many outputs are on a BCD decoder? 

a) 4                b) 16                 c) 8                   d) 10 

4. A decoder converts ________. 

a) Non coded information into coded form     b) Coded information into non coded form  

c) HIGHs to LOWs                                          d) LOWs to HIGHs 

5. Parallel Adders are 

a) Combinational logic circuits                     b) Sequential logic circuits 

c) Both of the above                             d) None of the above 

6. A Full Adder can be realized using 

    a) One half adder, two OR gates                    b) Two half adders, one OR gate 

    c) Two half adders, two OR gates                 d) Two half adders, one AND gate 

7. In which of the following adder circuits is the carry ripple delay is eliminated? 

    a) Half adder      b) Full adder       c) Parallel adder     d) Carry-look-ahead-adder 

8. A multiplexer is also known as 

    a) data accumulator   b)  data restorer      c) data selector     d) data distributor 

9. Which logic device is called a distributor? 

     a) Multiplexer    b) Demultiplexer   c) Encoder   d) Decoder 

10. How many inputs are on a BCD decoder? 

a) 4                             b) 16                             c) 8                          d) 10 

11. Which digital system translates coded characters into a more useful form? 

a) Encoder                   b) Display                     c) Counter               d) Decoder 

12. If f(A,B,C,D)=1 then the K-map contains _________ number of logic 1's is 

a) 4                    b) 8  c) 16                    d) 32 

13. In a hexadecimal to binary priority encoder, ______ has ______ priority. 

a)  0, high                       b) 7, low                        c)  F, low                   d) F, high 

14. What control signals may be necessary to operate a 1-line-to-16 line decoder? 



a) Flasher circuit control signal                     b) A LOW on all gate enable inputs 

c) Input from a hexadecimal counter            d) A HIGH on all gate enable circuits 

15. The logic function implemented by the circuit below is (ground implies a logic “0”) 

 

 

 

 

 

 

 

 

a) F= AND (P, Q)        b) F= OR (P, Q)       c) F= XNOR (P, Q)         d) F= XOR (P, Q) 

 

16. A digital system is required to amplify a binary-encoded audio signal. The user should be able 

to control the gain of the amplifier from minimum to a maximum in 100 increments. The 

minimum number of bits required to encode, in straight binary, is 

a) 8                                  b) 6                                     c) 5                                d) 7 

17. The minimum number of 2-input NAND/NOR gates required to realize a half adder is 

      a) 3                                  b) 4                                     c) 5                                d) 6 

18. The minimum number of 2-input NAND gates required to realize a full adder / full subtractor is 

a) 8                                  b) 9                                    c) 10                                d) 12 

19. The K – map for a Boolean function is shown in the figure. The number of essential prime  

         implicants for this function is 

 
a) 4                          b) 5                          c) 6                                 d)   7 

20. A function F(A,B,C) contains minterms 1,2,3,5,6,7, its complement contains 

a) Σm (0,4)       b) Σm(1,2,3,5,6,7)       c) ПM (1,2,3,5,6,7)   d) ПM (0,4) 

 

Section-B 

1. Simplify the following three variable Boolean expression using karnaugh map method. 

             Y= ABC' +A'B'C'+ABC+AB'C'. 

2. Using K-Map simplify the following Boolean function 

                     F=A'BC+ABC'+ABC+AB'C' 

3. Define combinational logic? Write the design procedure for combinational circuits.   

4. Explain the operation of half adder? Realize full adder using logic gates. 



5. Explain the operation of half subtractor? Realize full subtractor using logic gates. 

6. Discuss the functional principle of 4-bit ripple carry adder. what is its major disadvantage? 

7. What is decoder? Draw the logic diagram of 3 to 8 line decoder and explain its operation. 

8. What is the difference between encoder and priority encoder? Give the implementation of a 4-

bit priority encoder? 

9. Discuss how four bit BCD adder circuit is designed. Explain its operation.  

10. Briefly describe the concept of look-ahead carry generation with respect to its use in adder 

circuits.                                                                                                                                

11. Draw the circuit diagram of a 4-bit adder/subtractor and briefly describe its functional 

principle. 

12. Implement the following function with 8 to 1 multiplexer:                

                    

13. Implement  the  three-variable  Boolean  function  using  an  8-to-1multiplexer   

             

14. Realize the logic expression given below using a (i) 8:1 MUX  (ii) 16:1 MUX   

            f=∑ m (0,1,3,5,8,11,12,14,15) 

15. Design a 32:1 multiplexer using two 16:1 and 2:1 multiplexers. Implement the following 

multiple output combinational logic circuit using a 4 to 16 decoder:            

F1=∑ m (0,1,4,7,12,14,15), F2=∑ m (1,3,6,9,12), F3=∑ m (2,3,7,8,10) and  F4=∑ m (1,3,5) 

16. Implement the full adder sum and carry functions with decoder and multiplexers.     

17. Develop a 3-to-8 line decoder using NOR gates only, and draw its logic diagram. 

18. A combinational circuit is defined by the following equations: 

      f l = AB + A'B'C', f2 = A + B + C', f3 = A'B  + AB'. Design a circuit which will implement  

 these three equations using a decoder and NAND gates external to the decoder. 

19. Design a combinational circuit that detects an error in the representation of a decimal digit in 

BCD. The output of the circuit must be equal to logic 1 when the inputs contain any one of the 

six unused bit combinations in the BCD code. 

20. A combinational circuit is defined by the following three functions F1 = x'y'+xyz', F2 = x'+y, 

F3=xy+x'y'. Design the circuit with a decoder and external gates. 

21. A logic function has four inputs A, B, C and D that will produce output 1 whenever two 

adjacent input variables are 1’s.  Treat A and D are also adjacent.  Implement this logic function 

using 8 x 1 and 4 x 1 multiplexers. 

22. Obtain logical functions to design decimal to octal using priority encoder. 

23. Obtain  the minimal expression for Ʃm(2,3,5,7,9,11,12,13,14,15) and implement it in NOR 

logic 



24. Obtain  the minimal expression for ПM(2,3,5,7,9,11,12,13,14,15) and implement it in NAND 

logic 

25. With the use of maps, find the simplest sum-of-products form of the function F = fg where f = 

abc' + c'd + a'cd' + b'cz' and  g = (a + b + c' + d')(b' + c' + d)(a' + c + d') 

 

Section-C 

 

1. The output Y of a 2 bit comparator is logic 1whenever 2-bit input A is greater than 2-bit input B. 

The no. of combinations for which the output is logic 1 is                                  GATE-2012 

a) 4                            b) 6                                  c) 8                                  d) 10 

 

2. The logic function implemented by the circuit below is (ground implies a logic ‘0’) 

GATE-2011 

 

 
a) F= AND (P,Q)          b) F= OR (P,Q)             c) F= XNOR (P,Q)            d) F= XOR (P,Q) 

 

3. The Boolean function realized by the logic circuit shown is 

GATE-2010 

 
  a) F= Σm(0,1,3,5,9,10,14)                               b) F= Σm(2,3,5,7,8,12,13) 

  c) F= Σm(1,2,4,5,11,14,15)                             d) F= Σm(2,3,5,7,8,9,12) 

 

4. In the following circuit X is given by                                                                     GATE-2007 

 

 

 

 

a) 

X=AB'C'+A'BC'+A'B'C+ABC.                    b) X= AB'C'+A'BC'+A'B'C+ABC 

c) X=AB +BC+AC                                       d) X=A'B'+B'C'+A'C' 
 



5. The Boolean function f implemented in figure using two input multiplexers is     GATE-2005 

 

 

 

 

 

 

 

a) AB'C + ABC'               b) ABC + AB'C'          c) A'BC + A'B'C'           d) A'B'C + A'BC' 

 

6. The minimum no. of 2:1 multiplexers required to realize a 4:1multiplexer is        GATE-2004 

a) 1                b) 2                      c) 3                         d) 4  

 

7. The circuit shown in figure below has 4 boxes each described by inputs P, Q, R and outputs Y, Z 

with   Y= P Å Q Å R; Z=RQ+ P'R+Q P'. The circuit acts as a                        GATE-2003 

 

 

 

 

 

 

 

 

 

 

 

 

a) 4 bit adder giving P+Q                                    b) 4 bit subtractor giving P-Q 

c) 4 bit subtractor giving Q-P                              d) 4 bit adder giving P+Q+R 

 

8. The Boolean function f implemented in figure using 2 input multiplexers is         GATE 2005 

 

 

 

 

 

 

 

a) AB'C+ABC'       b) ABC+AB'C'            c) A'BC+A'B'C'               d) A'B'C+A'BC' 

9. The minimum number of 2 to 1MUX requires to realize a 4 to 1 MUX are         GATE 2004 

a) 1                         b) 2                         c) 3                           d) 4 

 

10. The circuit shown in figure converts                  GATE 2003 

 

 

 

 

 

 

 

a) BCD to binary code    b) Binary to Excess-3     c) Excess-3 to gray      d) Gray to binary 



 

11. Without any additional circuitry, an 8:1 MUX can be used to obtain             GATE 2003 

a) Some but not all Boolean functions of 3 Variables 

b) All functions of 3 variables but not of 4 variables 

c) All functions of 3 variables and some but not all functions of 4 variables 

d) All functions of 4 variables 

 

12. In the TTL circuit in figure below s2 to s0 are select lines and x7 and x0  are input lines . s0 and 

x0   are  LSB's. The output Y is                                                               GATE-2001                       

a)  indeterminate            b) A⊕B                c)  (A⊕B)’                 d) C’(A⊕B) + C(A⊕B)’                                    

 

 

 

 

 

 

 

 

 

 

13. For a binary halfsubtractor having inputs A and B ,The correct set of logical expressions for 

the outputs D and X are 

a) D=AB+A'B, X=A'B                                     c ) D=A'B+AB', X=A'B             GATE-1999 

b) D=A'B+AB', X=AB'                                    d) D=AB+A'B', X=AB' 

 

 

14. A 2 bit binary multipler can be implemented using                                             GATE-1997                                       

a) 2 inputs AND only                                       b) 2 input XORS and 4 input  AND gates only 

c) Two 2 inputs NORS and one XOR gate       d) XOR gates and shift registers 

 

15. The output of the circuit shown in figure is equal to                                           GATE-1995                                              

 

 
a) 0                               b) 1                         c) A'B+AB'                       d) (AB)'.(AB)'  

 

16. The logic realized by the circuit shown in figure is:                                           GATE-1992 

a) F=A.C                     b) F=A+C                  c) F=B.C                             d) F=B+C                  

 

 

 

 

 

 

17. The following boolean expression  Y=



   can be minimized to     

    GATE-2007 

a)                 b)                         

c)              d)  

 

18. The number of product terms in the minimized sum of product expression obtained through 

the following  karnaugh map (where d indicates don't care conditions).  

           GATE-2006 

1 0 0 1 

0 D 0 0 

0 0 D 1 

0 0 0 1 

 

a) 2                             b)3                              c)4                                d)5 

19. The boolean expression for the truth table  shown is                                          GATE-2005 

A B C F 
0 0 0 0 
0 0 1 0 
0 1 0 0 
0 1 1 1 
1 0 0 0 
1 0 1 0 
1 1 0 1 
1 1 1 0 

 

a)                                      c)           

b)                                      d)  

 

20. The Boolean expression  is equivalent to                               GATE-2004 

        a)                                           c)  

        b)                               d)  

 

UNIT – III 

 Sequential Logic Circuits 

 

Objectives: 

• To familiarize with the concepts of different sequential circuits. 

Syllabus: 

Design procedure, Flip-flops, Truth tables and excitation tables, Conversion of flip-flops, Design of 

counters, Ripple counters, Synchronous counters, Ring counter, Johnson counter, Registers, Shift 

registers, Universal shift register. 

Outcomes: 

Students will be able to 



• understand the functionality of different latches and flip-flops.. 

• distinguish the working of latch and flip-flop. 

• convert from one flip-flop to another flip-flop 

• classify various types of registers. 

• design synchronous and asynchronous counters. 

Learning Material 

INTRODUCTION: 

• Combinational circuits are those whose output at any instant of time is entirely dependent 

on the input present at that time. 

•  On the other hand Sequential circuits are those in which output at any given time is not 

only dependent on the present input but also on previous outputs. Naturally, such circuits 

must record the previous outputs which give rise to memory.  

• Often, there are requirements of digital circuits whose output remain unchanged, once set, 

even if the inputs are removed. Such devices are referred as “memory elements”, each of 

which can hold 1-bit of information. These binary bits can be retained in the memory 

indefinitely (as long as power is delivered) or until new information is feeded to the circuit. 

 

 

Fig 1: Block diagram of a sequential circuit 

• Block diagram of a sequential circuit, which can be regarded as a collection of memory 

elements and combinational circuit as shown in above Fig.1.  

• A feedback path is formed by using memory elements, input to which is the output of 

combinational circuit.  

• The binary information stored in memory element at any given time is defined as the state 

of sequential circuit at that time. Present contents of memory elements are referred as the 

present state. 



•  The combinational circuit receives the signals from external input and from the memory 

output and determines the external output. 

•  They also determine the condition and binary values to change the state of memory. The 

new contents of the memory elements are referred as next state and depend upon the 

external input and present state. 

•  Hence, a sequential circuit can be completely specified by a time sequence of inputs, 

outputs and the internal states. In general, clock is used to control the operation. The clock 

frequency determines the speed of operation of a sequential circuit.  

 

CLASSIFICATION OF SEQUENTIAL CIRCUITS: 

There exist two main categories of sequential circuits, namely synchronous and asynchronous 

sequential circuits.  

i. Asynchronous Sequential Circuits:  

• Sequential circuits whose behavior depends upon the sequence, in which the inputs are applied, 

are called Asynchronous Sequential Circuits.  

• In these circuits, outputs are affected whenever a change in inputs is detected. Memory 

elements used in asynchronous circuits mostly are time delay devices.  

• The memory capability of time delay devices is due to the propagation delay of the devices. 

Propagation delay produced by the logic gates is sufficient for this purpose.  

• Hence “An Synchronous sequential circuit can be regarded as a combinational circuit with 

feedback”. However feedback among logic gates makes the asynchronous sequential circuits, 

often susceptible to instability. 

•  As a result they may become unstable. This makes the design of asynchronous circuits very 

tedious and difficult. 

ii. Synchronous Sequential Circuit: 

• It may be defined as a sequential circuit, whose state can be affected only at the discrete 

instants of time.  

• The synchronization is achieved by using a timing device, termed as System Clock Generator, 

which generates a periodic train of clock pulses.  



• The clock pulses are feed to entire system in such a way that internal states (i.e. memory 

contents) are affected only when the clock pulses hit the circuit.  

STORAGE ELEMENTS:  

• Latches 

• A storage element in a digital circuit can maintain a binary state indefinitely (as long as power 

is delivered to the circuit), until directed by an input signal to switch states.  

• The major differences among various types of storage elements are in the number of inputs 

they possess and in the manner in which the inputs affect the binary state.  

• Storage elements that operate with signal levels (rather than signal transitions) are referred to 

as latches; those controlled by a clock transition are flip-flops. Latches are said to be level 

sensitive devices; flip-flops are edge sensitive devices.  

• The two types of storage elements are related because latches are the basic circuits from which 

all flip-flops are constructed. Although latches are useful for storing binary information and for 

the design of asynchronous sequential circuits, they are not practical for use as storage 

elements in synchronous sequential circuits. 

i. SR Latch 

• The SR latch is a circuit with two cross-coupled NOR gates or two cross-coupled NAND gates, 

and two inputs labeled S for set and R for reset.  

• Both the versions are shown in Fig 2(a) & Fig 2(b). The latch has two useful states. When 

output Q = 1 and Q’ = 0, the latch is said to be in the set state. When Q = 0 and Q’ = 1, it is in 

the reset state. SR 

SR Latch with Control Input 

• The operation of the basic SR latch can be modified by providing an additional input signal 

that determines (controls) when the state of the latch can be changed by determining whether S 

and R (or S’ and R’) can affect the circuit. 

•  An SR latch with a control input is shown in Fig 2(c) which consists of the basic SR latch and 

two additional NAND gates. The control input En acts as an enable signal for the other two 

inputs. 

•  The outputs of the NAND gates stay at the logic-1 level as long as the enable signal 

remains at 0. This is the quiescent condition for the SR latch. When the enable input goes to 1, 

information from the S or R input is allowed to affect the latch. 



 

 

 

• The set state is reached with S = 1, R = 0, and En = 1 (active-high enabled). To change to the 

reset state, the inputs must be S = 0, R = 1, and En = 1. In either case, when En returns to 0, the 

circuit remains in its current state.  

• The control input disables the circuit by applying 0 to En, so that the state of the output does 

not change regardless of the values of S and R. Moreover, when En = 1 and both the S and R 

inputs are equal to 0, the state of the circuit does not change.  



• These conditions are listed in the function table accompanying the diagram. An indeterminate 

condition occurs when all three inputs are equal to 1. This condition places 0’s on both inputs 

of the basic SR latch, which puts it in the undefined state. 

ii. D Latch (Transparent latch) 

• One way to eliminate the undesirable condition of the indeterminate state in the SR latch is to 

ensure that inputs S and R are never equal to 1 at the same time.  

• This is done in the D latch, shown in Fig.3. This latch has only two inputs: D (data) and En 

(enable). The D input goes directly to the S input, and its complement is applied to the R input. 

•  As long as the enable input is at 0, the cross-coupled SR latch has both inputs at the 1 level and 

the circuit cannot change state regardless of the value of D. The D input is sampled when En = 

1. 

•  If D = 1, the Q output goes to 1, placing the circuit in the set state. If D = 0, output Q goes to 0, 

placing the circuit in the reset state. 

 

Fig. 3 D-latch 

The graphical representration of S-R and D-latch is as shown below 

 

FLIPFLOPS 

• The synchronous sequential circuit which uses clock at the input of memory element is 

referred as Clocked Sequential circuit and the memory element in this circuit known as Flip-

Flop that can store 1-bit of information, and thus forms a 1-bit memory cell.  



• These circuits have two outputs, one giving the value of binary bit stored in it and the other 

gives the complemented value.  

• The real differences among various flip-flops are the number of inputs and the manner in 

which binary information can be entered into it 

• The flip-flops are 1-bit memory cells that can maintain the stored bit for desired period of time 

which consists of two stable stages so it is called as Bi-stable  device and states are 0V and + 

5V corresponding to Logic 0 and Logic 1 respectively 

i. RS Flip-Flop 

• A flip-flop circuit can be constructed either by using two 2-input OR gate or NAND gates. 

These circuits consists of a cross coupled connection from output of one gate to the input of 

the other gate constitutes a feedback path. Each flip-flop has two outputs, Q and Q’, and two 

inputs, set, reset. 

• The operation of basic flip-flop can be modified by proving an additional control input that 

determines when the state of the circuit is to be changed. 

• An RS flip-flop with a clock pulse (CP) input, which consists of a basic flip-flop circuit and 

two additional NAND gates, is as shown in Fig. 4. 

 

Fig. 4. RS flip-flop with NAND gates 

ii. D-Flip-flop 



• The SR latch, which has two inputs S and R. At any time to store a bit, must activate both the 

inputs simultaneously. This may be troubling in some applications. Use of only one data line is 

convenient in such applications. 

•  Moreover the forbidden input combination S = R = 1 may occur unintentionally, thus leading 

the flip-flop to indeterminate state. In order to deal such issues, SR flip-flop is further modified 

as shown in Fig 5. 

•  The resultant is referred as D flip-flop which has only one input labelled D (called as Data 

input). An external NAND gate (connected as inverter) is used to ensure that S and R inputs are 

always complement to each other. Thus to store information in this latch, only one signal has to 

be generated. 

 

Fig 5: D flip-flop or D latch 

• Operation of this flip-flop is straight forward. At any instant of time the output Q is same as D 

(i.e. Q = D). Since output is exactly same as the input, the latch may be viewed as a delay unit.  

• The flip-flop always takes some time to produce output, after the input is applied. This is called 

propagation delay.  

• Thus it is said that the information present at point D (i.e. at input) will take a time equal to the 

propagation delay to reach to Q. Hence the information is delayed. For this reason it is often 

called as Delay (D) Flip-Flop. 

iii. JK FLIPFLOP 

• A JK flip-flop is a refinement of the SR flip-flop in that the indeterminate state of the SR type is 

defined in the JK type.  

• Inputs J and K behave like inputs S and R to set and clear the flip-flop (note that in a JK flip-flop, 

the letter J is for set and the letter K is for clear). 



•  When logic 1 inputs are applied to both J and K simultaneously, the flip-flop switches to its 

complement state, ie., if Q=1, it switches to Q=0 and vice versa. A clocked JK flip-flop is shown 

in Fig. 6. 

•  Output Q is ANDed with K and CP inputs so that the flip-flop is cleared during a clock pulse 

only if Q was previously 1.  

• Similarly, ouput Q' is ANDed with J and CP inputs so that the flip-flop is set with a clock pulse 

only if Q' was previously 1. 

 

Fig.6 JK Flip-flop 

•  Note that because of the feedback connection in the JK flip-flop, a CP signal which remains a 1 

(while J=K=1) after the outputs have been complemented once will cause repeated and 

continuous transitions of the outputs.  

• To avoid this, the clock pulses must have a time duration less than the propagation delay through 

the flip-flop.  

• The restriction on the pulse width can be eliminated with a master-slave or edge-triggered 

construction. The same reasoning also applies to the T flip-flop presented next. 

iv. T Flip-Flop 

• The T flip-flop is a single input version of the JK flip-flop which is  shown, in Fig.7and it is  

obtained from the JK type if both inputs are tied together. The output of the T flip-flop "toggles" 

with each clock pulse. 



 

Fig. 7 Clocked T flip-flop 

Race around Condition and Solution 

• Whenever the width of the trigger pulse is greater than the propagation time of the flip-flop, then 

flip-flop continues to toggle 1-0-1-0 until the pulse turns 0.  

• When the pulse turns 0, unpredictable output may result i.e. the state and   output not known. 

This is called race around condition. 

•  In level-triggered flip-flop circuits, the circuit is always active when the clock signal is high, 

and consequently unpredictable output may result. For example, during this active clock period, 

the output of a T-FF may toggle continuously. 

•  The output at the end of the active period is therefore unpredictable. To overcome this problem, 

edge triggered circuits can be used whose output is determined by the edge, instead of the level, 

of the clock signal, for example, the rising (or trailing) edge. 

• Another way to resolve the problem is the Master-Slave circuit shown in Fig 8. 

 

Fig 8: Master slave circuit 

The operation of a Master-Slave FF has two phases as shown in Fig.8 



• During the high period of the clock, the master FF is active, taking both inputs and feedback from 

the slave FF. The slave FF is de-activated during this period by the negation of the clock so that 

the new output of the master FF won’t affect it. 

• During the low period of the clock, the master FF is deactivated while the slave FF is active. The 

output of the master FF can now trigger the slave FF to properly set its output. However, this 

output will not affect the master FF through the feedback as it is not active. 

 

Fig 9: Master slave operation 

• It is seen that the trailing edge of the clock signal will trigger the change of the output of the 

Master-Slave FF. The master-slave combination can be constructed for any type of flip-flop by 

adding a clocked RS flip-flop with an inverted clock to form the slave. A master-slave JK flip-

flop constructed with NAND gates is shown in Fig.10. 

• It consists of two flip-flops; gates1 through 4 form the master flip-flop, and gates 5 through 8 

form the slave flip-flop.  The information presented at the J and K inputs is transmitted to the 

master flip-flop on the positive edge of the clock pulse and is held there until the negative edge 

of the clock pulse occurs, after which it is allowed to pass through to the slave flip-flop. 

• The clock input is normally 0, which keeps the outputs of gates 1 and 2 at the 1 level. This 

prevents the J and K inputs from affecting the master flip-flop. 

• The slave flip-flop is a clocked RS type, with the master flip-flop supplying the inputs and the 

clock input being inverted by gate 9. When the clock is 0, the output of gate 9 is 1, so that output 

Q is equal to Y, and Q’ is equal to Y’.  

• When the positive edge of a clock pulse occurs, the master flip-flop is affected and may switch 

states. The slave flip-flop is isolated as long as the clock is at the level1, because the output of 

gate 9 provides a 1 to both inputs of the NAND basic flip-flop of gates 7 and 8. 

• When the clock input returns to 0, the master flip-flop is isolated from J and K inputs and the 

slave flip-flop goes to the same state as the master flip-flop. 



 

Fig.10 Clocked master-slave JK flip-flop 

Operating Characteristics of Flip-flops 

The operation characteristics specify the performance, operating requirements, and operating 

limitations of the circuits. The operation characteristics mentions here apply to all flip-flops 

regardless of the particular form of the circuit. 

Propagation Delay Time—is the interval of time required after an input signal has been applied 

for the resulting output change to occur. 

Set-up Time—is the minimum interval required for the logic levels to be maintained constantly on 

the inputs (J and K, or S and R, or D) prior to the triggering edge of the clock pulse in order for the 

levels to be reliably clocked into the flip-flop. 

Hold Time—is the minimum interval required for the logic levels to remain on the inputs after the 

triggering edge of the clock pulse in order for the levels to be reliably clocked into the flip-flop. 

Maximum Clock Frequency—is the highest rate that a flip-flop can be reliably triggered. 

Power Dissipation—is the total power consumption of the device. 

Pulse Widths—are the minimum pulse widths specified by the manufacturer for the Clock, SET 

and CLEAR inputs. 

Flip-Flop Applications 

• Frequency Division 

• Parallel Data Storage 

FLIP-FLOP EXCITATION TABLE 

• The characteristic table is useful during the analysis of sequential circuits when the value of flip-

flop inputs is known and if the value of the flip-flop output Q after the rising edge of the clock 

signal. As with any other truth table, the map method is used  to derive the characteristic 

equation for each flip-flop. 

• During the design process the transition from present state to the next state s usually known and 

flip-flop input conditions are found  that will cause the required transition. For this reason a table 

that lists the required inputs for a given change of state is needed. Such a list is called the 

excitation table.  



• There are four possible transitions from present state to the next state. The required input 

conditions are derived from the information available in the characteristic table.  

• The symbol X in the table represents a “don’t care” condition, that is, it does not matter whether 

the input is 1 or 0. 

• The different types of flip flops (RS, JK, D, T) can also be described by their excitation, table as 

shown in Fig. The left side shows the desired transition from Qn to Qn+1, the right side gives 

the triggering signals of various types of FFs needed for the transitions. 

Table 1:Excitation table 

 

  

FLIP-FLOP CONVERSIONS 

• To convert a given type A FF to a desired type B FF some conversion logic is used and the key 

here is to use the excitation table specified in Table 1 which shows the necessary triggering 

signal (S, R, J, K, D and T) for a desired flip flop state transition Qn →Qn+1 is reproduced here. 

Example 1. Convert a D-FF to a T-FF: 

 

 A circuit is to be designed which is used  to generate the triggering signal D as a function of T and 

Q : D = f (T, Q) 

Consider the excitation table: 

 

Treating D as a function of T and current FF state Q Qn we have D = T'Q + TQ = T⊕Q 



 

Fig. 11 Convert a D-FF to a T-FF 

Example 2. Convert a RS-FF to a D-FF: 

 

A circuit is to be designed which can generate the triggering signals S and R as functions of D and 

Q. Consider the excitation table: 

 

The desired signal S and R can be obtained as functions of T and current FF state Q from the 

Karnaugh maps: 

 

Fg.12 Convert a RS-FF to a D-FF 

Example 3. Convert a RS-FF to a JK-FF. 



 

We need to design the circuit to generate the triggering signals S and R as functions of J, K and Q. 

Consider the excitation table. 

 

The desired signals S and R as function J, K and current FF state Q can be obtained from the 

Karnaugh maps: 

 

Fig.13 Convert a RS-FF to a JK-FF 

RIPPLE COUNTER 

• A register that goes through a prescribed sequence of states upon the application of input pulses 

is called a counter.  

• The input pulses may be clock pulses, or they may originate from some external source and may 

occur at a fixed interval of time or at random.  

• The sequence of states may follow the binary number sequence or any other sequence of states.  



• A counter that follows the binary number sequence is called a binary counter. An n ‐bit binary 

counter consists of n flip‐flops and can count in binary from 0 through 2n - 1.  

• Counters are available in two categories: ripple counters and synchronous counters.  

• In a ripple counter, a flip‐flop output transition serves as a source for triggering other flip‐flops. 

In other words, the C (clock)input of some or all flip‐flops are triggered, not by the common 

clock pulses, but rather by the transition that occurs in other flip‐flop outputs.  

• In a synchronous counter, the C inputs of all flip‐flops receive the common clock. 

Binary Ripple Counter 

• A ripple counter is an asynchronous counter where only the first flip-flop is clocked by an 

external clock. All subsequent flip-flops are clocked by the output of the preceding flip-flop.  

• Asynchronous counters are also called ripple-counters because of the way the clock pulse ripples 

it way through the flip-flops.  

• The MOD of the ripple counter or asynchronous counter is 2n if n flip-flops are used. For a 4-bit 

counter, the range of the count is 0000 to 1111. 

• A counter may count up or count down or count up and down depending on the input control. 

The count sequence usually repeats itself. When counting up, the count sequence goes from 

0000, 0001, 0010, ... 1110 , 1111 , 0000, 0001, ... etc. 

•  When counting down the count sequence goes in the opposite manner: 1111, 1110, ... 0010, 

0001, 0000, 1111, 1110, ... etc. 

• The complement of the count sequence counts in reverse direction. If the uncomplemented 

output counts up, the complemented output counts down. If the uncomplemented output counts 

down, the complemented output counts up.  

• There are many ways to implement the ripple counter depending on the characteristics of the flip 

flops used and the requirements of the count sequence. 

▪ Clock Trigger: Positive edged or Negative edged 

▪ JK or D flip-flops 

▪ Count Direction: Up, Down, or Up/Down 

• Asynchronous counters are slower than synchronous counters because of the delay in the 

transmission of the pulses from flip-flop to flip-flop.  



• With a synchronous circuit, all the bits in the count change synchronously with the assertion of 

the clock. Examples of synchronous counters are the Ring and Johnson counter. 

• It can be implemented using D-type flip-flops or JK-type flip-flops. The circuit below uses 2 D 

flip-flops to implement a divide-by-4 ripple counter (2n  = 22  = 4). It counts down. 

 

Fig. 13 Two bit Ripple Conter 

• Click on CLK (Red) switch and observe the changes in the outputs of the flip flops. The 

CLK switch is a momentary switch (similar to a door bell switch - normally off). 

• PR and CLR are both connected to VCC (set to 1) 

• The D flip flop clock has a rising edge CLK input. For example Q0 behaves as follows 

• The D input value just before the CLK rising edge is noted (Q00). 

• When CLK rising edge occurs, Q0 is assigned the previously noted D value 

(Q00). 

• Thus, whenever a rising edge appears at the CLK of the D flip flop, the output 

Q changes state (or toggles). 

• The MOD or number of unique states of this 2 flip flop ripple counter is 4 (22). 

•  Simulate and Breadboard the Ripple Counter circuit. 

•  A Truncated Ripple Counter is used if a MOD of less than 2n is required. For example, if 

    you want to change the sequence from 3,2,1,0,3,2,1,0 ... to 3,2,0,3,2,0 ... 

BCD Ripple Counter 

• A decimal counter follows a sequence of 10 states and returns to 0 after the count of 9. Such a 

counter must have at least four flip‐flops to represent each decimal digit, since a decimal digit is 

represented by a binary code with at least four bits. 



•  The sequence of states in a decimal counter is dictated by the binary code used to represent a 

decimal digit. If BCD is used, the sequence of states is as shown in the state diagram of Fig14. A 

decimal counter is similar to a binary counter, except that the state after 1001 (the code for 

decimal digit 9) is 0000 (the code for decimal digit 0). 

 

Fig.14 State Diagram of BCD counter 

• The logic diagram of a BCD ripple counter using JK flip‐flops is shown in Fig.15, the four 

outputs are designated by the letter symbol Q, with a numeric subscript equal to the binary 

weight of the corresponding bit in the BCD code.  

• Note that the output of Q1 is applied to the C inputs of both Q2 and Q8 and the output of Q2 is 

applied to the C input of Q4. The J and K inputs are connected either to a permanent 1 signal or 

to outputs of other flip‐flops. 

• A ripple counter is an asynchronous sequential circuit. Signals that affect the flip‐flop transition 

depend on the way they change from 1 to 0. The operation of the counter can be explained by a 

list of conditions for flip‐flop transitions. These conditions are derived from the logic diagram 

and from knowledge of how a JK flip‐flop operates. 

•  Remember that when the C input goes from 1 to 0, the flip‐flop is set if J = 1, is cleared if K = 1, 

is complemented if J = K = 1, and is left unchanged if J = K = 0. 



 

Fig.15 BCD counter 

SYNCHRONOUS COUNTERS 

• Synchronous counters are different from ripple counters in that clock pulses are applied to the 

inputs of all flip‐flops. A common clock triggers all flip‐flops simultaneously, rather than one at 

a time in succession as in a ripple counter.  

• The decision whether a flip‐flop is to be complemented is determined from the values of the data 

inputs, such as T or J and K at the time of the clock edge. If T = 0 or J = K = 0, the flip‐flop does 

not change state. If T = 1 or J = K = 1, the flip‐flop complements. 

 

Binary Counter 

• The design of a synchronous binary counter is so simple that there is no need to go through a 

sequential logic design process. In a synchronous binary counter, the flip‐flop in the least 

significant position is complemented with every pulse.  



• A flip-flop in any other position is complemented when all the bits in the lower significant 

positions are equal to 1. For example, if the present state of a four‐bit counter is A3A2A1A0 = 

0011, the next count is 0100. A0 is always complemented.  

• A1 is complemented because the present state of A0 = 1. A2 is complemented because the 

present state of A1A0 = 11. However, A3 is not complemented, because the present state of 

A2A1A0 = 011, which does not give an all‐1’s condition. 

• Synchronous binary counters have a regular pattern and can be constructed with complementing 

flip‐flops and gates. The regular pattern can be seen from the four‐bit counter depicted in Fig. 16 

below.  

• The C inputs of all flip‐flops are connected to a common clock. The counter is enabled by Count 

Enable. If the enable input is 0, all J and K inputs are equal to 0 and the clock does not change 

the state of the counter.  

• The first stage, A0, has its J and K equal to 1 if the counter is enabled. The other J and K inputs 

are equal to 1 if all previous least significant stages are equal to 1 and the count is enabled. 

• The chain of AND gates generates the required logic for the J and K inputs in each stage. The 

counter can be extended to any number of stages, with each stage having an additional flip‐flop 

and an AND gate that gives an output of 1 if all previous flip‐flop outputs are 1. 

 

Fig.16 Four Bit Synchrounous Binary Counter 

Binary Up/Down Counter 



• A synchronous countdown binary counter goes through the binary states in reverse order, from 

1111 down to 0000 and back to 1111 to repeat the count. 

•  It is possible to design a countdown counter in the usual manner, but the result is predictable by 

inspection of the downward binary count. The bit in the least significant position is 

complemented with each pulse.  

• A bit in any other position is complemented if all lower significant bits are equal to 0. For 

example, the next state after the present state of 0100 is 0011. The least significant bit is always 

complemented. 

• The second significant bit is complemented because the first bit is 0. The third significant bit is 

complemented because the first two bits are equal to 0. But the fourth bit does not change, 

because not all lower significant bits are equal to 0. 

• A countdown binary counter can be constructed as shown in Fig.17 below, except that the inputs 

to the AND gates must come from the complemented outputs, instead of the normal outputs, of 

the previous flip‐flops.  

• The two operations can be combined in one circuit to form a counter capable of counting either 

up or down. The circuit of an up–down binary counter using T flip‐flops is shown in Fig.17 It 

has an up control input and a down control input.  

• When the up input is 1, the circuit counts up, since the T inputs receive their signals from the 

values of the previous normal outputs of the flip‐flops.  

• When the down input is 1 and the up input is 0, the circuit counts down, since the complemented 

outputs of the previous flip‐flops are applied to the T inputs. When the up and down inputs are 

both 0, the circuit does not change state and remains in the same count. 

• When the up and down inputs are both 1, the circuit counts up. This set of conditions ensures 

that only one operation is performed at any given time. Note that the up input has priority over 

the down input. 



 

Fig 17: Four-bit up-down binary counter 

Ring Counter 

• A ring counter is a Shift Register (a cascade connection of flip-flops) with the output of the last 

flip flop connected to the input of the first. It is initialized such that only one of the flip flop 

output is 1 while the remainder is 0.  

• The 1 bit is circulated so the state repeats every n clock cycles if n flip-flops are used. The 

"MOD" or "MODULUS" of a counter is the number of unique states. The MOD of the n flip 

flop ring counter is n. It can be implemented using D-type flip-flops (or JK-type flip-flops). 

 

Fig 18: Ring Counter 

Notes: 

· Enable the flips flops by clicking on the RESET (Green) switch. The RESET switch is a 

  on/off switch (similar to a room light switch) 

· Click on CLK (Red) switch and observe the changes in the outputs of the flip flops. The 

CLK switch is a momentary switch (similar to a door bell switch - normally off). 

· The D flip flop clock has a rising edge CLK input. For example Q1 behaves as follows: 

-The D input value just before the CLK rising edge is noted (Q0). 

-When CLK rising edge occurs, Q1 is assigned the previously noted D value (Q0). 



 

The MOD or number of unique states of this 3 flip flop ring counter is 3. 

 

Johnson Counter 

• A Johnson counter is a modified ring counter, where the inverted output from the last flip flop is 

connected to the input to the first.  

• The register cycles through a sequence of bit-patterns. The MOD of the Johnson counter is 2n if 

n flip-flops are used.  

• The main advantage of the Johnson counter is that it only needs half the number of flip-flops 

compared to the standard ring counter for the same MOD. 

• It can be implemented using D-type flip-flops (or JK-type flip-flops). 

 

Fig 19: Johnson Counter 

Notes: 

• Enable the flips flops by clicking on the RESET (Green) switch. The RESET switch is a 

on/off switch (similar to a room light switch) 

• Click on CLK (Red) switch and observe the changes in the outputs of the flip flops. The 

• CLK switch is a momentary switch (similar to a door bell switch - normally off). 

o The D flip flop clock has a rising edge CLK input. For example Q1 behaves as 

follows: 



• The D input value just before the CLK rising edge is noted (Q0). 

• When CLK rising edge occurs, Q1 is assigned the previously noted D value (Q0). 

 

The MOD or number of unique states of this 3 flip flop Johnson counter is 6. 

 

REGISTER: 

• A clocked sequential circuit consists of a group of flip‐flops and combinational gates. The 

flip‐flops are essential because, in their absence, the circuit reduces to a purely combinational 

circuit (provided that there is no feedback among the gates). 

•  A circuit with flip‐flops is considered a sequential circuit even in the absence of combinational 

gates. Circuits that include flip‐flops are usually classified by the function they perform rather 

than by the name of the sequential circuit. Two such circuits are registers and counters. 

• A register is a group of flip‐flops, each one of which shares a common clock and is capable of 

storing one bit of information. An n ‐bit register consists of a group of n flip‐flops capable of 

storing n bits of binary information.  

• In addition to the flip‐flops, a register may have combinational gates that perform certain 

data‐processing tasks. In its broadest definition, a register consists of a group of flip‐flops 

together with gates that affect their operation.  

• The flip‐flops hold the binary information, and the gates determine how the information is 

transferred into the register. 



• A counter is essentially a register that goes through a predetermined sequence of binary states. 

The gates in the counter are connected in such a way as to produce the prescribed sequence of 

states. 

•  Although counters are a special type of register, it is common to differentiate them by giving 

them a different name. 

• Various types of registers are available commercially. The simplest register is one that consists 

of only flip‐flops, without any gates. 

•  A register constructed with four D ‐type flip‐flops to form a four‐bit data storage register is 

shown in figure below.  

• The common clock input triggers all flip‐flops on the positive edge of each pulse, and the binary 

data available at the four inputs are transferred into the register. 

•  The value of ( I 3 , I 2 , I 1 , I 0 ) immediately before the clock edge determines the value of ( A 

3 , A 2 , A 1 , A 0 ) after the clock edge.  

• The four outputs can be sampled at any time to obtain the binary information stored in the 

register. 

• The input Clear_b goes to the active‐low R (reset) input of all four flip‐flops. When this input 

goes to 0, all flip‐flops are reset asynchronously. 

•  The Clear_b input is useful for clearing the register to all 0’s prior to its clocked operation. The 

R inputs must be maintained at logic 1 (i.e., de-asserted) during normal clocked operation.  

• Note that, depending on the flip‐flop, either Clear, Clear_b, reset, or reset_b can be used to 

indicate the transfer of the register to an all 0’s state. 

SHIFT REGISTERS: 

• A register capable of shifting the binary information held in each cell to its neighboring cell, in a 

selected direction, is called a shift register.  

• The logical configuration of a shift register consists of a chain of flip‐flops in cascade, with the 

output of one flip‐flop connected to the input of the next flip‐flop.  

• All flip‐flops receive common clock pulses, which activate the shift of data from one stage to the 

next. The simplest possible shift register is one that uses only flip‐flops, as shown in Fig.20 

• The output of a given flip‐flop is connected to the D input of the flip‐flop at its right. This shift 

register is unidirectional (left‐to‐right).  



• Each clock pulse shifts the contents of the register one bit position to the right. The configuration 

does not support a left shift.  

• The serial input determines what goes into the leftmost flip‐flop during the shift. The serial 

output is taken from the output of the rightmost flip‐flop. 

 

 Fig 20: 4 –Bit Register 

 

Fig 21: Four bit Shift register 

• Sometimes it is necessary to control the shift so that it occurs only with certain pulses, but not 

with others. As with the data register discussed in the previous section, the clock’s signal can be 

suppressed by gating the clock signal to prevent the register from shifting.  



• A preferred alternative in high speed circuits is to suppress the clock action, rather than gate the 

clock signal, by leaving the clock path unchanged, but recirculating the output of each register 

cell back through a two‐channel mux whose output is connected to the input of the cell.  

• When the clock action is not suppressed, the other channel of the mux provides a data path to the 

cell. 

• Shift registers have found considerable application in arithmatic operations. Since, moving a 

binary number one bit to the left is equivalent to multiplying the number by 2 and moving the 

number one bit position to the right amounts to dividing the number by 2. 

•  Thus, multiplications and divisions can be accomplished by shifting data bits. Shift registers 

find considerable application in generating a sequence of control pulses. 

 

Fig 22: Data Transmission in Shift Register 

 

 

Bidirectional Shift Registers  

The registers discussed so far involved only right shift operations. Each right shift operation has the 

effect of successively dividing the binary number by two.  

• If the operation is reversed (left shift), this has the effect of multiplying the number by two. With 

suitable gating arrangement a serial shift register can perform both operations. 

 A bi-directional, or reversible shift register is one in which the data can be shift either left or right. 

A four-bit bi-directional shift register using D-flip-flops is shown in Fig 23. 

Here a set of NAND gates are configured as OR gates to select data inputs from the right or left 

adjacent bistables, as selected by the LEFT_/RIGHT control line. 



 

Fig 23: 4 Bit Bidirectional Shift Register 

Universal Shift Register: 

A Universal Shift register can shift the data directional along with the parallel load operation. The 

following are the functions done by a Universal Shift register. 

• A clear control to clear the register to 0. 

• A CP input for clock pulse to synchronize all operations 

• A shift-right control to enable the shift-right operation and the serial input and output lines 

associated with the shift right. 

• A shift-left control to enable the shift-left operation and the serial input and output lines 

associated with the shift left. 

• A parallel-load control to enable a parallel transfer and n input lines  associated with the 

parallel transfer. 

• N parallel output lines. 

• A control state that leaves the information in the register unchanged even though clock 

pulses are continuously applied. 



 

Fig 24: 4- Bit Universal Shift Register 

• The Universal Shift Register that is shown in Fig. 24 has all the capabilities that are listed above. 

It consists f four D-flip-flops and four multiplexers which has two selection lines. The S1 and S0 

inputs control the mode of operation of the register  which is specified in Table.1 

•  

 

 

• When S1 S0=00, the present value of the register is applied to the D-inputs of the flip-flops 

which forms a path from output of each flip-flop into the input of the same flip-flop. So no 

change of state occurs. 

• When S1 S0=01, terminal 1 of the multiplexer inputs have a path to the D inputs of the flip-flops 

which causes a shift-right operation. 

•  When S1 S0=10, a shift-left operation results, with the other serial input going into flip-flop A1. 

• Finally, when S1 S0=11, the binary information on the parallel input lines is transferred into the 

register simultaneously during next clock pulse. 

Table.1: Functional Table for Universal Shift Register 

Mode Control 

Register Operation S1 S0 



0 0 No change 

0 1 Shift right 

1 0 Shift left 

1 1 Parallel Load 

 

APPLICATIONS OF SHIFT REGISTERS 

Shift registers can be found in many applications. Here is a list of a few. 

• To Produce Time Delay 

• To Simplify Combinational Logic 

• To Convert Serial Data to Parallel Data 

 

 

Assignment-Cum-Tutorial Questions 

 

Section-A 

1. A sequential  logic circuit 

    A) Must  contain flip-flops                          B) may contain flip-flops    

    C) does not contain flip-flops                     D) contain latches 

2.  A sequential circuit does not use clock pulses. It is  

    A) an asynchronous sequential circuit  

    B) a synchronous sequential circuit 

    C) a counter                                                  D) a shift register 

3. A flip-flop can store   

    A)  one bit of data                                        B) two bits of data 

    C)  tree bits of data                                      D) any number of bits of data 

4. The characteristic equation of a J-K flip-flop is_____.         
5. The characteristic equation of a D flip-flop is_____.         
6. The transparent flip-flop is 

    A) an S-R flip-flop                                            B) a D flip-flop 

    C) a T flip-flop                                                  D) a J-K flip flop 

7. A universal register 

     A) accepts serial input                            B) accepts parallel input 

     C) gives serial and parallel                      D) is cable of all of the above 

8. The output Qn of a J-K flip-flop is 1. It changes to 0 when a clock pulse is 

applied. Then the inputs Jn  and Kn are respectively 

    A) 0 and X         B) 1 and X              C) X and 1      D)  0 and X 



9. The output Qn of a S-R flip-flop is 0.It changes to 1 when a clock pulse is 

applied. Then the  inputs Sn and Rn are respectively 

    A)  X and 1         B) 0 and 1              C) X and 0     D)   X and 1 

10. A 4-bit binary ripple counter uses flip-flops with propagation delay time of 

25ns each. The maximum possible time required for change of state will be 

   A)  25ns               B) 50ns                      C) 75ns           D) 100ns 

11. A mod-2 counter followed by a mod-5 counter is 

    A) the same as a mod-5 counter followed by a mod-2 counter 

    B) a decade counter              C) a mod-7 counter         D) none of above 

12. A sequential circuit with ten states will have 

    A) 10 flip-flops         B) 5 flop-flops       C) 4 flip-flops      D) 0 flip-flops 

13. The minimum number of flop-flops required for a mod-12 ripple counter is 

      A)  3                        B) 4                       C) 6                         D) 12  

Section-B 

1. Distinguish between combinational and sequential circuits. 

2. Find the characteristic equation for JK flip-flop. 

3. Convert a J-K  flip-flop into T flip-flop 

4. Convert an SR flip-flop into JK flip-flop 

5. What is a universal shift register and explain it’s working. 

6. Write the Excitation tables of D, T, SR, JK Flip Flops 

7. What are shift register counters? Draw Ring Counter and explain the 

operation with Truth Table.  

8. Design a 3 bit synchronous up/down counter using JK flip-flop. 

9. Design a mod 7 asynchronous counter using JK flip-flop. 

10. Design a mod 12 synchronous counter using T flip-flop. 

Section-C 

1. A synchronous counter counts the sequence 0-1-0-2-0-3 and then repeats. 

The minimum number of J-K flip-flops required to implement this counter is                                                                       

GATE-2016 

A) 1                           B) 2                              C) 4                       D) 5 

2. A positive edge-triggered D flip-flop is connected to a positive edge-triggered 

JK flip flop as follows. The Q output of the D flip-flop is connected to both the 

J and K inputs of the JK flip-flop, while the Q output of the JK flip-flop is 

connected to the input of the D flip-flop. Initially, the output of the D flip-flop 

is set to logic one and the output of the JK flip-flop is cleared. Which one of 

the following is the bit sequence (including the initial state) generated at the 
 



Q output of the JK flip-flop when the flip-flops are connected to a free-

running common clock? Assume that J = K = 1 is the toggle mode and J = K 

= 0 is the state-holding mode of the JK flip-flop. Both the flip-flops have non-

zero propagation delays.                                                           GATE-2015                                           

           

 

 

A)  0110110…                                                  B) 0100100… 

C) 011101110…                                              D) 011001100… 

3. The outputs of the two flip-flops Q1, Q2 in the figure shown are initialized to 0, 

0. The sequence generated at Q1 upon application of clock signal is  

                                                                                           GATE-2014 

 

 

 

A)  01110… B)01010… 

C) 00110…                                                                           D) 01100… 

 

4. The circuit shown in the figure is a                                         GATE-2014                                                                  

 

A)  Toggle flip-flop                                            B) JK flip-flop 

C) SR flip-flop                                                  D) Master-Slave D flip-flop 

5. When the output Y in the circuit below is ‘1’. It implies that data has                           

GATE-2011  

            

 

A)  Changed from ‘0’ to ‘1’                                      

B) Changed from ‘1’ to ‘0’ 

C) Changed in either direction                               D) Not changed 



6. Assuming that the all flip-flops are in reset condition initially, the count 

sequence observed at QA in the circuit shown is                                                         

  

 

 

 

 

 

A)  0010111….                                        B) 0001011….       GATE-2010 

C) 0101111….                                         D) 0110100…. 

7. For the circuit shown, the counter state (Q1Q0) follows the sequences            

 

 

A)  00,01,10,11,00,……                                                        GATE-2007 

B)  00,01,10,00,01,…… 

C)  00,01,11,00,01,…… 

D)  00,10,11,00,10,…… 

 

8. Two D flip-flops are to be connected as a synchronous counter as shown 

below, that goes through the following Q1 Q0 sequence 

00→01→11→10→00→…………… 

The inputs D0 and D1 respectively should be connected as    GATE-2006                      

 

        A)  and Q0                          B)   and Q1       

        C)   Q0and Q0                    D)   Q0and Q1 Q0 

9. The present output Qn of an edge triggered JK-Flip Flop is logic ‘0’. If 

J=1,then Qn+1 is                                                                    GATE-2005                                                                                                                                                      



A)  Can’t determined                                                                                      

B)  Will be logic ‘1’ 

C)  Will be logic ‘0’ 

D)  Will race around 

10. Consider the given circuit. In the circuit race around condition will     

        

 

 

 

 

A)  Does not occur                                                                   GATE-2005 

B)  Occur when CLK=0 

C)  Occur when CLK=1 and A=B=1  

D)  Occur when CLK=1 and A=B=0 

 

11. A Master-Slave flip-flop has the characteristic that           GATE-2004                              

A)  Change in the input immediately reflected in the output. 

B)  Change in the output occurs when the state of the master is affected. 

C)  Change in the output occurs when the state of the slave is affected. 

D)  Both the master and slave states are affected at the same time. 

 

12. The ripple counter shown in the given figure is works as a                   

 

A)  Mod-3 up counter 

B)  Mod-5 up counter 

C)  Mod-3 down counter 

D)  Mod-5 down counter 

 

13. In the figure shown is A=1 and B=1, the input B is now replaced with a 

sequence 101010…., the output X 

and Y will be     IES-2005  

 



 

 

 

A) Fixed at 0 and 1 respectively      B) X=1010…. While Y=0101… 

C) X=1010…. and  Y=1010….          D) Fixed at 1 and 0 respectively   

14. A Master Slave flip flop has the characteristic that IES-2001  

A) Change in input immediately reflected in the output  

B) Change in the output occurs when the state of the Master is affected   

C) Change in the output occurs when the state of the Slaver is affected    

D) Both the master and the slave states are affected at the same time 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

UNIT – IV 

 Finite State Machines 

 

Objectives: 

• To familiarize with the concepts of Finite state machines. 

 

Syllabus: 



Types of FSM, Capabilities and limitations of FSM, State assignment, Realization of FSM 

using flip-flops, Mealy to Moore conversion and vice-versa, Reduction of state tables using 

partition technique 

 

Outcomes: 

Students will be able to 

• design FSM charts using flip flops. 

• understand the melay machines and moore machines. 

• Reduction methods of state tables. 

• partition technique. 

 

 

 

 

 

 

 

 

 

 

Model Of A Finite State Machine (FSM) 
   It is a Finite State Machine (FSM) also called Finite Automation  in the literature pertaining to 

automata theory. FSM comprises an input set (I), output set (Z),a set of states (S), state transition 

function (𝛿), and output function (λ). Thus, the finite state machine M is a quintuple given by M = 

(I,Z,S, 𝛿, λ),where 𝛿 is a function of present state resulting in the next state and   λ is a function 

which enables us to compute the output depending on the present inputs and present state.The 

previous statement refers to what is generally called the Mealy Machines. 

The clock pulses control all timing in the machine . If the clock is removed, the model represents an 

asynchronous sequential machine with mere delays replacing flip-flops. 



  

 

Limitations Of Finite State Machines 

• No finite state machine can be produced for an infinite sequence. 

• No finite state machine can multiply two arbitrary large binary numbers. 

No finite state machine can be designed to produce such a non-periodic infinite sequence for a 

periodic input. 

Mealy And Moore Models 

    A sequential machine M is a quintuple comprising a set of inputs I,a set of outputs Z, a set of 

states S, a transition function 𝛿 which enables finding the next state depending on the present 

state and present input and finally an output function λ.This is symbolically expressed as 

M=(I,Z,S, 𝛿, λ). 

If the output function depends on the present state and present inputs,it is called the Mealy 

model,named after G.H.Mealy, a pioneer in the field. If the output is associated only with the 

present state,it is called the Moore model, named after another pioneer E.F.Moore.The counters 

are clearly Moore machines as the output depends only on the states of the flip-flops.Likewise, 

a sequence detector is also a Moore machine.Serial adder is an example of a Mealy machine as 

each one of its states is reached producing a 0 or 1 output depending on the starting state and 

the value of the inputs. 

Mealy To Moore Conversion 

Let us learn how to convert a Mealy machine into a Moore machine .The state diagram and the 

state table of the synchronous serial adder are given below.Notice that the state P is reached from 

the state Q on the application of the inputs AB=00 and ,in the process, the machine produces an 



output Z=1 indicated on the arc as 00/1.Also notice that the machine produces Z=0 in another 

transition to P.This transition is indicated as a self loop around P on inputs AB=00/0.For AB=01 or 

10 while in P, the machine produces an output 1 and remains in the same state P. 

The two important  observations are 

1.If the Mealy machine has K states, the equivalent Moore machine will have at most 2K states if 

the output is a binary variable. 

2.There is no power-on state,unless specifically defined.A special state may be introduced if the 

user wants one. 

 

Moore To Mealy Conversion  

    It is amazingly simple to convert a Moore to Mealy machine.Let some state si given Moore 

machine be associated with an output Zi.What we need to do is simply associate the output  Zi 



where Si occurs as the next state by scanning all the input columns.All states of Moore machine are 

Z homogeneous. 

Reduction Of State Tables Using Partition Technique: 

         Clearly, the 0 partition P0 contains all the states of the machine in one group indicated by 

brackets, because by applying 0 inputs, that is ,no inputs at all, it is not possible to distinguish 

between the states.If you apply any one input, either x=0 or x=1, observe that the outputs ,A,B,F 

cause the corresponding output pattern to be 00 while the states C,D,E cause the outputs to be 01 in 

the two input columns of the corresponding rows. Thus, by merely observing the outputs , we may 

form the 1-partition P1 as (ABF),(CDE). 

If each successor pair is within one bracket , we retain the pair intact; otherwise we split the pair. 

Suppose in P2 ,we consider the transition from pair AB in the x=0 column and x=1 column. This 

means that “equivalence of A and B implies equivalence of A and B”- a strange partition which is 

to be ignored. 

  Continuing the process, we find that neither C and  E nor D and E can be equivalent. Hence E 

parts company from CD in the next partition P3 .Continuing further , we find that P4 is identical to 

P3 and hence we stop here and conclude that no experiment exists to distinguish between the states 

AB and CD. Hence we taken them as equivalence classes. 

 

 

Derivation Of Flip-Flop Input Equations 

       After the number of states in a state table has been reduced, the following procedure can be 

used to derive the flip-flop input equations: 

1. Assign flip-flop state values to correspond to the states in the reduced table. 



2. Construct a transition table which gives the next states of the flip-flops as a function of the 

present states and inputs. 

3. Derive the next state maps from the transition table. 

           We could make a straight binary state assignment for which S0 is represented by flip-flops 

states ABC=000, S1 by ABC =001, S2 by ABC=010, etc. However because the correspondence 

between flip-flops states and the state names is arbitrary , we could use many different state 

assignments. Using a different assignment may lead to simpler or more complex flip-flops input 

equations. 

 S0=000,   S1=110,  S2=001 ,  S3=111,   S4=011,    S5=101,   S6=010  

   

 

  

For XABC=0000 the next state entry is 110, so we fill in A+ =1 , B+ =1, C+=0.The below figure 

shows the D flipflop input equations can be derived directly from the next state maps because 

DA=A+ , DB=B+, DC=C+. If J-K flip-flops are used, the J and K input equations can be derived 

from the next state maps as shown below. 

 A sequential circuit with two inputs (X1 and X2) and two outputs (Z1 and Z2).Note that the 

column headings are listed in Karnaugh map order because this will facilitate derivation of the flip-

flops input equations. Because the table has four states, two flip-flops (A and B) are required to 

realize the table. 

 



 

 

 

 

If J-K, T, or S-R flip-flops are used, the flip-flops input maps can be derived from the next state 

maps. 

            



 

 

Equivalent State Assignments 

       After the number of states in a state table has been reduced, the next step in realizing the table 

is to assign flip-flop states to correspond to the states in the table. The trail-and-error method 

described next is useful for only a small number of states. If the number of states is small, it may be 

feasible to try all possible state assignments, evaluate the cost of the realization for each assignment, 

and choose the assignment with low cost. 

    If symmetrical flip-flops such as T, J-K, S-R are used, complementing one or more columns of 

the state assignment will have no effect on the cost of realization. Consider a J-K flip-flip imbedded 

in a circuit. Leave the circuit unchanged and interchange the J and K input connections.  

 

 



 

If unsymmetrical flip-flops are used such as D flip-flop , it is still true that permuting columns in 

the state assignment will not affect the cost; however complementing a column may require adding  

an inverter to the circuit . 

If different types of gates are available the circuit can generally be redesigned to eliminate the 

inverter and use the same number of gates as the original. 



 

   The J-K and D flip-flops input equations for the three assignments can be derived using 

Karnaugh maps.  



 

 We will say that two state assignments are equivalent if one can be derived from the other 

by permuting and complementing columns.Two state assignments which are not equivalent are said 

to be distinct. Hand solution is feasible for two, three,or four states ; computer solution is feasible 

for five through eight states; but more than nine states it is not practically to try all assignments 

even if high-speed computer is used. 



    

 

 

 

 

 

 

 

 

IMPORTANT TERMS: 

 

Terminal state: 



         A terminal state is a state with no incoming arcs which start from other states and 

terminate on it. 

 

Strongly connected machine: 

        A sequential machine M is said to be strongly connected, if for every pair of states si, sj 

of the sequential machine,there exists an input sequence which takes the machine M from si  

to sj. 

 

Redundant states: 

      Redundant states are states whose functions can be accomplished by other states. 

 

Equivalent states: 

       Two states are said to be equivalent if for every possible set of inputs they generate 

exactly the same output and the same next state. 

When equivalent states are there, one of them can be retained and all others can be removed 

without altering the input-output relationship because they are redundant. This results in 

reduction of states which in turn reduces the number of required flip-flops and logic gates 

reducing the cost of final circuit. 

 

 

 

 

 

 

 

Unit – V 

Programmable Logic Devices & HDL 

 
Objectives: 

• To familiarize with the concepts of Programmable Logic Devices (PLDs): 

PROM, PAL, PLA, CPLDs, FPGAs, etc. 

•   How to implement various logic circuits using PLDs. 

•   To explore about Verilog HDL models. 

 
Syllabus: 

Types  of  PLD’s-  PROM,  PAL,  PLA,  Basic  structure  of  CPLD  and  FPGA,  Advantages  

of FPGA’s,  Introduction  to  Verilog  -  structural  Specification  of  logic  circuits,  

Behavioral specification of logic circuits, Hierarchical Verilog Code. 

Outcomes: 



Students will be able to 

•   draw the basic structures of PLDs. 
 

•   realize various logic functions using PLDs. 
 

•   explain various models in verilog HDL.



 

Learning Material 
 

5.1 Programmable Logic Devices (PLDs) 
 

Introduction: 

An IC that contains large numbers of gates, flip-flops, etc. that can be configured by the user 

to perform different functions is called a Programmable Logic Device (PLD). The internal 

logic  gates  and/or  connections  of  PLDs  can  be  changed/configured  by  a  programming 

process. One of the simplest programming technologies is to use fuses. In the original state of 

the  device,  all  the  fuses  are  intact.  Programming  the  device  involves  blowing  those  

fuses along the paths that must be removed in order to obtain the particular configuration of 

the desired logic function. PLDs are typically built with an array of AND gates (AND-array) 

and an array of OR gates (OR-array) is shown in figure 5.1. 

 

 
 

Fig 5.1 Basic PLD structure 

 
Advantages of PLDs: 

Problems of using standard ICs: 
 

Problems of using standard ICs in logic design are that they require hundreds or thousands of 

these  ICs,  considerable  amount  of  circuit  board  space,  a  great  deal  of  time  and  cost  

in inserting, soldering, and testing. Also require keeping a significant inventory of ICs. 

Advantages of using PLDs: 

Advantages  of  using  PLDs  are  less  board  space,  faster,  lower  power  requirements  (i.e., 

smaller  power  supplies),  less  costly  assembly  processes,  higher  reliability  (fewer  ICs  

and circuit connections means easier troubleshooting), and availability of design software. 

 
Types of PLDs: 

 

There are three fundamental types of standard PLDs: PROM, PAL, and PLA. A fourth type of 

PLD   is   the   Complex   Programmable   Logic   Device   (CPLD)   and   next   one   is   Field 

Programmable Gate Array (FPGA).   A typical PLD may have hundreds to millions of gates. 

In  order  to  show  the  internal  logic  diagram  for  such  technologies  in  a  concise  form,  it  is 

necessary to have special symbols for array logic. Figure 5.2 shows the conventional and array 

logic symbols for a multiple input AND and a multiple input OR gate.



 

 
 

Fig 5.2 Symbol for both conventional and array 

Three Fundamental Types of PLDs: 

The three fundamental types of PLDs differ in the placement of programmable connections in 

the AND-OR arrays. Figure 5.3 shows the locations of the programmable connections for the 

three types. 

The PROM (Programmable Read Only Memory) has a fixed AND array (constructed as a 

decoder)   and   programmable   connections   for   the   output   OR   gates   array.   The   

PROM implements Boolean functions in sum-of-minterms form. 

The  PAL  (Programmable  Array  Logic)  device  has  a  programmable  AND  array and  

fixed connections for the OR array. 

The PLA (Programmable Logic Array) has programmable connections  for both AND  and 
 

OR arrays. So it is the most flexible type of PLD. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig 5.3 General structure notations for various types of PLDs 
 

The ROM (Read Only Memory) or PROM (Programmable Read Only Memory): 

The input  lines  to  the  AND  array are hard-wired  and  the  output  lines  to  the  OR  array 

are programmable. Each AND gate generates one of the possible AND products (i.e., 

minterms). implement the following Boolean functions using PROM.



Example: 
 

 
A(X,Y,Z)=∑m(5,6,7), B(X,Y,Z)=∑m(3,5,6,7)

The  given  two  functions  are  in  sum  of  min  terms  form  and  each  function  is  having  

three variables  X,  Y  &  Z.  So,  it   requires  a  3  to  8  decoder  and  two  programmable  OR  

gates  for producing these two functions. The corresponding PROM is shown in the following 

figure 5.4. 

 
 

Fig 5.4 PROM design for given example 
 

Here,  3  to  8  decoder  generates  eight  min  terms.  The  two  programmable  OR  gates  have  

the access  of  all  these  min  terms.  But,  only  the  required  min  terms  are  programmed  in  

order  to produce  the  respective  Boolean  functions  by  each  OR  gate.  The  symbol  ‘X’  is  

used  for programmable connections. 

The PLA (Programmable Logic Array): 

In PLAs, instead of using a decoder as in PROMs, a number (k) of AND gates is used where 

k < 2n, (n is the number of inputs). Each of the AND gates can be programmed to generate a 

product term of the input variables and does not generate all the minterms as in the ROM. The 

AND and OR gates inside the PLA are initially fabricated with the links (fuses) among them. 

The specific Boolean functions are implemented in sum of products form by opening 

appropriate links and leaving the desired connections. A block diagram of the PLA is shown 

in the figure 5.5. It consists of n inputs, m outputs, and k product terms. 
 

 
 
 
 
 
 
 
 
 
 
 

Fig 5.5 Block diagram for PLA 

The  product  terms  constitute  a  group  of  k  AND  gates  each  of  2n  inputs.  Links  are  

inserted between  all  n  inputs  and  their  complement  values  to  each  of  the  AND  gates.  

Links  are  also



provided between the outputs of the AND gates and the inputs of the OR gates. Since PLA has m-

outputs,  the  number  of  OR  gates  is  m.  The  output  of  each  OR  gate  goes  to  an  XOR  

gate, where  the  other  input  has  two  sets  of  links,  one  connected  to  logic  0  and  other  to  

logic  1.  It allows the output function to be generated either in the true form or in the 

complement form. The output is inverted when the XOR input is connected to 1 (since X ⊕ 1 = 

X/). The output does 

not change when the XOR input is connected to 0 (since X ⊕ 0 = X). Thus, the total number of 

programmable links is 2n x k + k x m + 2m. The size of the PLA is specified by the number of 

inputs (n), the number of product terms (k), and the number of outputs (m), (the number of sum 

terms is equal to the number of outputs). 

Example: 

Implement the combinational circuit having the shown truth table, using PLA. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Each  product  term  in  the  expression  requires  an  AND  gate.  To  minimize  the  cost,  it  

is necessary to simplify the function to a minimum number of product terms. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
Designing using a PLA, a careful investigation must be taken in order to reduce the distinct 

product terms. Both the true and complement forms of each function should be simplified to 

see which one can be expressed with fewer product terms and which one provides product 

terms that are common to other functions. The combination that gives a minimum number of 

product terms is: 

F1
’ = AB + AC + BC or F1  = (AB + AC + BC)’ 

F2  = AB + AC + A’B’C’



This gives only 4 distinct product terms: AB, AC, BC, and A’B’C’. 

So the PLA table will be as follows: 

 
 
 
 
 
 
 
 
 
 
 
 

For  each  product  term,  the  inputs  are  marked  with  1,  0,  or  –  (dash).  If  a  variable  in  

the product  term  appears  in  its  normal  form  (unprimed),  the  corresponding  input  

variable  is marked with a 1. A 1 in the Inputs column specifies a path from the 

corresponding input to the input of the AND gate that forms the product term. A 0 in the 

Inputs column specifies a path  from  the  corresponding  complemented  input  to  the  input  

of  the  AND  gate.  A  dash specifies  no  connection.  The appropriate  fuses  are blown  and  

the  ones  left  intact  form  the desired paths. It is assumed that the open terminals in the 

AND gate behave like a 1 input. In the outputs column, a T (true) specifies that the other 

input of the corresponding XOR gate can be connected to 0, and a C (complement) specifies 

a connection to 1. Note that output F1 is the normal (or true) output even though a C (for 

complement) is marked over it. This is because  F1’ is  generated  with AND-OR circuit prior 

to the output  XOR.  The output XOR complements the function F1’ to produce the true F1  

output as its second input is connected to logic 1 is shown in figure 5.6. 

 
 

Fig 5.6 PLA realization for given example 
 

 
The PAL (Programmable Array Logic): 

The PAL device is a PLD with a fixed OR array and a programmable AND array. As only AND 
 

gates are programmable, the PAL device is easier to program but it is not as flexible as the PLA.



 

 
 
 

Fig 5.7 4 inputs and 4 outputs PAL Example 
 

 
The  device  shown  in  the  figure  5.7  has  4  inputs  and  4  outputs.  Each  input  has  a  

buffer- inverter gate, and  each  output is generated  by a fixed OR gate.  The device has 4  

sections, each  composed of a 3-wide AND-OR array, meaning that there are 3 programmable 

AND gates in each section. Each AND gate has 10 programmable input connections 

indicating by 

10 vertical lines intersecting each horizontal line. The horizontal line symbolizes the multiple 

input configuration of an AND gate. One of the outputs F1  is connected to a buffer-inverter 

gate  and  is  fed  back  into  the  inputs  of  the  AND  gates  through  programmed  

connections. Designing  using  a  PAL  device,  the  Boolean  functions  must  be  simplified  

to  fit  into  each section. The number of product terms in each section is fixed and if the 

number of terms in the function is too large, it may be necessary to use two or more sections 

to implement one Boolean function. 

Example: 
 

Implement the following Boolean functions using the PAL device as shown above: 
 

W(A, B, C, D) = ∑m(2, 12, 13) 

X(A, B, C, D) = ∑m(7, 8, 9, 10, 11, 12, 13, 14, 15) 

Y(A, B, C, D) = ∑m(0, 2, 3, 4, 5, 6, 7, 8, 10, 11, 15) 

Z(A, B, C, D) = ∑m(1, 2, 8, 12, 13) 
 
Simplifying the 4 functions to a minimum number of terms results in the following 

Boolean functions:



 

W = ABC’ + A’B’CD’ 

X = A + BCD 

Y = A’B + CD + B’D’ 

Z = ABC’ + A’B’CD + AC’D’ + A’B’C’D 

=W +AC’D’ + A’B’C’D 
 
Note that the function for Z has four product terms. The logical sum of two of these terms is 

equal to W. Thus, by using W, it is possible to reduce the number of terms for Z from four to 

three, so that the function can fit into the given PAL device. The PAL programming table is 

similar to the table used for the PLA, except that only the inputs of the AND gates need to be 

programmed. 

 
 

 

 

Fig 5.8 4 inputs and 4 outputs PAL Example with three AND gates



The   figure   5.8   shows   the   connection   map   for   the   PAL   device,   as   specified   in   

the programming table. Since both W and X have two product terms, third AND gate is not 

used. If  all  the  inputs  to  this  AND  gate  left  intact,  then  its  output  will  always  be  0,  

because  it receives both the true and complement of each input variable i.e., AA’ =0 

Comparison between PROM, PLA and PAL 
 

PROM                                           PLA                                               PAL 

AND array is fixed and OR 
 

array is programmable. 

Both AND and OR arrays are 
 

programmable. 

OR  array  is  fixed  and  AND 
 

array is programmable.
 

Cheaper and simple to use.        Costliest   and   complex   than 
 

PAL and PROMs, 
 

Ail minterms are decoded.         AND        array        can        

be programmed   to   get   

desired 

minterms. 

 

Cheaper and simpler. 
 

 
 
AND       array       can       be 

programmed  to  get  desired 

minterms.

 

Onfy  Boolean  functions  in 

Standard  SOP  form  can  

be implemented using 

PROM 

 

Any    Boolean    functions    In 

SOP form can be implemented 

using PLA. 

 

Any   Boolean   functions   In 

SOP        form        can        

be implemented using PLA.

 

 
 

Complex Programmable Logic Devices (CPLDs): 
 

With the advancement of technology, it has become possible to produce devices with higher 

capacities than SPLD’s. As chip densities increased, it was natural for the PLD manufacturers 

to  evolve  their  products  into  larger  (logically,  but  not  necessarily  physically)  parts  

called Complex Programmable Logic Devices (CPLDs). For most practical purposes, CPLDs 

can be thought  of  as  multiple  PLDs  (plus  some  programmable  interconnect)  in  a  single  

chip.  The larger size of a CPLD allows to implement either more logic equations or a more 

complicated design.  A CPLD contains a bunch  of PLD  blocks whose inputs and  outputs are 

connected together by a global interconnection matrix. Thus a CPLD has two levels of 

programmability: each PLD block can be programmed, and then the interconnections between 

the PLDs can be programmed. For most practical purposes, CPLDs can be thought of as 

multiple PLDs (plus some  programmable  interconnect)  in  a  single  chip.  The  larger  size  

of  a  CPLD  allows  to implement  either  more  logic  equations  or  a  more  complicated  

design.  A  CPLD  contains  a bunch  of  PLD  blocks  whose  inputs  and  outputs  are  

connected  together  by  a  global interconnection  matrix.  Thus  a  CPLD  has  two  levels  of  

programmability:  each  PLD  block can be programmed, and then the interconnections 

between the PLDs can be programmed.



 

 
 

 
 

Fig. 5.9 Internal structure and one section of CPLD 

 
In  other  words,  some  of  the  theoretically possible  connections  between  logic  

block outputs and inputs may not actually be supported within a given CPLD. The 

effect of this is most often to make 100% utilization of the macrocells very difficult to 

achieve. Some hardware designs simply won't fit within a given CPLD, even though 

there are sufficient logic gates and flip-flops available. Because CPLDs can hold larger 

designs than  PLDs,  their  potential  uses  are  more  varied.  They  are  still  

sometimes  used  for simple  applications  like  address  decoding,  but  more often  

contain  high-performance control-logic or complex finite state machines. At the high-

end (in terms of numbers of  gates),  there  is  also  a  lot  of  overlap  in  potential  

applications  with  FPGAs.



Traditionally,  CPLDs  have  been  chosen  over  FPGAs  whenever  high-performance 

logic is required. Because of its less flexible internal architecture, the delay through a 

CPLD (measured in nanoseconds) is more predictable and usually shorter. 

 
Field Programmable Gate Arrays (FPGAs): 

 

The development of the FPGA was distinct from the SPLD/CPLD evolution. FPGAs 

offer   the   highest   amount   of   logic   density,   the   most   features,   and   the   

highest performance.  The  largest  FPGA  now  shipping,  part  of  the  Xilinx  

Virtex™  line  of devices,  provides  eight  million  "system  gates"  (the  relative  

density  of  logic).  These advanced devices also offer features such as built-in 

hardwired processors (such as the IBM  Power  PC),  substantial  amounts  of  memory,  

clock  management  systems,  and support  for  many  of  the  latest,  very  fast  device-

to-device  signaling  technologies. FPGAs are used in a wide variety of  applications 

ranging from data  processing and storage,  to  instrumentation,  telecommunications,  

and  digital  signal  processing.  The value of programmable logic has always been its 

ability to shorten development cycles for  electronic  equipment  manufacturers  and  

help  them  get  their  product  to  market faster.  As  PLD  (Programmable  Logic  

Device)  suppliers  continue  to  integrate  more functions  inside  their  devices,  

reduce  costs,  and  increase  the  availability  of  time- saving  IP  cores,  

programmable  logic  is  certain  to  expand  its  popularity  with  digital designers.  An  

FPGA  is  a  device  that  contains  a  matrix  of  reconfigurable  gate  array logic  

circuitry.  When  a  FPGA  is  configured,  the  internal  circuitry is  connected  in  a 

way  that  creates  a  hardware  implementation  of  the  software  application.  Unlike 

processors,  FPGAs  use  dedicated  hardware for  processing logic  and  do  not  have  

an operating system. FPGAs are truly parallel in nature so different processing 

operations do not have to compete for the same resources.  As a result, the performance 

of one part  of  the  application  is  not  affected  when  additional  processing  is  added.  

Also, multiple control loops can run on a single FPGA device at different rates. FPGA-

based control systems can enforce critical interlock logic and can be designed to 

prevent I/O forcing  by  an  operator.  However,  unlike  hard-wired  printed  circuit  

board  (PCB) designs  which  have  fixed  hardware  resources,  FPGA-based  systems  

can  literally rewire  their  internal  circuitry  to  allow  reconfiguration  after  the  

control  system  is deployed  to  the  field.  FPGA  devices  deliver  the  performance  

and  reliability  of dedicated hardware circuitry.



 

 
Fig. 5.10 Internal Structure of FPGA 

 

A  single  FPGA  can  replace  thousands  of  discrete  components  by  incorporating 

millions of logic gates in a single integrated circuit (IC) chip. The internal resources of 

an FPGA chip consist of a matrix of configurable logic blocks (CLBs) surrounded by a 

periphery of I/O blocks shown in Fig. 5.10. Signals are routed within the FPGA matrix 

by programmable interconnect switches and wire routes. In an FPGA logic blocks are 

implemented  using  multiple  level  low  fan-in  gates,  which  gives  it  a  more  

compact design compared to an implementation with two-level AND-OR logic. FPGA 

provides its user a way to configure: 

1.   The intersection between the logic blocks and 
 

2.   The function of each logic block. 
 

Logic  block  of  an  FPGA  can  be  configured  in  such  a  way  that  it  can  provide 

functionality as simple as that of transistor or as complex as that of a microprocessor. It 

can used to implement different combinations of combinational and sequential logic 

functions. Logic blocks of an FPGA can be implemented by any of the following: 

1.   Transistor pairs 
 

2.   combinational gates like basic NAND gates or XOR gates 
 

3.   n-input Lookup tables; two input LUT is shown in figure 5.11. 
 

4.   Multiplexers 
 

5.   Wide fan-in And-OR structure.



 

 
 

Fig. 5.11 A Two input LUT 
 
 
The  FPGA  consists  of  three  main  structures:  1)  Programmable  logic  structure, 

 

2) Programmable routing structure, and 3) Programmable Input/Output (I/O). 
 

1.Programmable logic structure 

The   programmable   logic   structure   FPGA   consists   of   a   2-dimensional   array   of 

configurable  logic  blocks  (CLBs).  Each  CLB  can  be  configured  (programmed)  to 

implement any Boolean function of its input variables. Typically CLBs have between 4-6 

input  variables.  Functions  of  larger  number  of  variables  are  implemented  using  

more than   one   CLB.   In   addition,   each   CLB   typically   contains   1   or   2   FFs   

to   allow implementation  of  sequential  logic.  Large  designs  are  partitioned  and  

mapped  to  a number  of  CLBs  with  each  CLB  configured  (programmed)  to  perform  

a  particular function. These CLBs are then connected together to fully implement the 

target design. Connecting the CLBs is done using the FPGA programmable routing 

structure. 

2. Programmable routing structure 

To  allow  for  flexible  interconnection  of  CLBs,  FPGAs  have  3  programmable 

routing  resources:  Vertical  and  horizontal  routing  channels  which  consist  of 

different length wires that can be connected together if needed. These channel run 

vertically and  horizontally between  columns  and  rows  of  CLBs  as  shown  in  

the figure 5.12 (a).  Connection boxes, which are a set of programmable links that 

can connect input and output pins of the CLBs to wires of the vertical or the 

horizontal routing  channels.  Switch  boxes,  located  at  the  intersection  of  the  

vertical  and



horizontal channels. These are a set of programmable links that can connect wire 
 

segments in the horizontal and vertical channels. 
 

 
 

 

 
3. Programmable I/O 

Fig. 5.12 (a)  Programmable routing structure

These are mainly buffers that can be configured either as input buffers, output 

buffers  or  input/output  buffers.  They  allow  the  pins  of  the  FPGA  chip  to 

function either as input pins, output pins or input/output pins. programmable I/O 

block is shown in figure 5.12 (b). 

 

 

 
 
 

Fig. 5.12 (b) Programmable I/O block 

Advantages of FPGA’s: 
•   Short Development time 

•   Reconfigurable 

•   Saves board space 

•   Flexible to changes 

•   No need for ASIC expensive design and production 

•   Fast time to market 

•   Bugs can be fixed easily 

•   Of the shelf solutions are available



 
 

INTRODUCTION TO VERILOG 
 
In the 1980s rapid advances in integrated circuit technology lead to efforts to develop 

standard  design  practices  for digital  circuits.  Verilog was  produced  as  a  part  of  

that effort. The original version of Verilog was developed by Gateway Design 

Automation, which was later acquired by Cadence Design Systems. In 1990 Verilog 

was put into the  public  domain,  and  it  has  since  become  one  of  the  most  

popular  languages  for describing digital circuits. In 1995 Verilog was adopted as an 

official IEEE Standard, called 1364-1995. An enhanced version of Verilog, called 

Verilog 2001, was adopted as IEEE Standard 1364-2001 in 2001. While this version 

introduced a number of new features, it also supports all of the features in the original 

Verilog standard.  Verilog was  originally  intended  for  simulation  and  verification  

of  digital  circuits.  Sub- sequently, with the addition of synthesis capability, Verilog 

has also become popular for use  in  design  entry in  CAD  systems.  The  CAD  tools  

are  used  to  synthesize  the Verilog code into a hardware implementation of the 

described circuit. In this book our main  use  of  Verilog  will  be  for  synthesis.  

Verilog  is  a  complex,  sophisticated language. Learning all of its features is a 

daunting task. However, for use in synthesis only a subset of these features is 

important. 

 
 

Fig 5.13 A Typical CAD system



Verilog is introduced in several stages throughout the book. Our general approach will 

be  to  introduce  particular  features  only  when  they  are  relevant  to  the  design  

topics covered in that part of the text. In Appendix A we provide a concise summary of 

the Verilog features covered in the book. The reader will find it convenient to refer to 

that material from time to time. In the remainder of this chapter we discuss the most 

basic concepts  needed  to  write  simple  Verilog  code.  A  typical  CAD  system  is  

given  in figure 5.13. 

Representation of Digital Circuits in Verilog 

When  using  CAD  tools  to  synthesize  a  logic  circuit,  the  designer  can  provide  

the initial  description  of  the  circuit  in  several  different  ways,  as  we  explained  in  

the previous section. One efficient way is to write this description in the form of 

Verilog source  code.  The  Verilog  compiler  translates  this  code  into  a  logic  

circuit.  Verilog allows the designer to describe a desired circuit in a number of ways. 

One possibility is to use Verilog constructs that describe the structure of the circuit in 

terms of circuit elements, such as logic gates. A larger circuit is defined by writing 

code that connects such elements together. This approach is referred to as the 

structural representation of logic  circuits.  Another  possibility  is  to  describe  a  

circuit  more  abstractly,  by  using logic expressions and Verilog programming 

constructs that define the desired behavior of the circuit, but not its actual structure in 

terms of gates. This is called the behavioral representation. 

STRUCTURAL SPECIFICATION OF LOGIC CIRCUITS 
 

Verilog includes a set of gate-level primitives that correspond to commonly-used logic 

gates. A gate is represented by indicating its functional name, output, and inputs. For 

example, a two-input AND gate, with output y and inputs x1  and x2, is denoted as 

and (y, x1, x2); 
 

A four-input OR gate is specified as 
 

or (y, x1, x2, x3, x4); 
 

The keywords nand and nor are used to define the NAND and NOR gates in the same 

way. The NOT gate given by not (y, x); 
 

implements  y = x. The gate-level primitives can be used to specify larger circuits.. 
 

A logic circuit is specified in the form of a module that contains the statements that 

define the circuit. A module has inputs and outputs, which are referred to as its ports. 

The word port is a commonly-used term that refers to an input or output connection to 

an  electronic  circuit.  Consider  the  multiplexer  circuit  from  Figure  5.14.  This  

circuit



can be represented by the Verilog code in Figure  5.14. The first statement gives the 

module a name, example1, and indicates that there are four port signals. The next two 

statements declare that x1, x2, and s are to be treated as input signals, 

 
 
 
 
 
 
 
 

Fig 5.14 A logic circuit for multiplexer 

 
module  example1 (x1, x2, s, f); 

input  x1, x2, s; 

output  f; 

not (k, s); 

and (g, k, x1); 

and (h, s, x2); 

or (f, g, h); 

endmodule 
Verilog code for the circuit in Figure 5.14. 

 

 
 
 
while f is the output. The actual structure of the circuit is specified in 

the four statements that follow. The NOT  gate gives k = s. The AND 

gates  produce  g  =  sx1   and  h  =  sx2.  The  outputs  of  AND  gates  

are combined in the OR gate to form 

f= g + h 
 

= sx1  + sx2 
 

The module ends with the endmodule statement. 
 

A second example of Verilog code is given in Figure 5.15. It defines a 

circuit  that  has  four  input  signals,  x1,  x2,  x3,  and  x4,  and  three  

output signals, f, g, and h. It implements the logic functions 

g= x1x3  + x2x4 
 

h= (x1  + x3)(x2  + x4) 
 

f= g + h 
 

module  example2 (x1, x2, x3, x4, f, g, h); 
 

input x1, x2, x3, x4; 
 

output f, g, h; 
 

and (z1, x1, x3);



and (z2, x2, x4); 
 

or (g, z1, z2); 
 

or (z3, x1,    x3); 

or (z4,    x2, x4); 

and (h, z3, z4); 

or (f, g, h); 

endmodule 

 

Figure 5.15 Verilog code for a four-input circuit. 
 
Instead  of  using  explicit  NOT  gates  to  define  x2   and  x3,  we  have  used  the  

Verilog operator “∼” (tilde character on the keyboard) to denote complementation. 

Thus, x2  is indicated as ∼x2 in the code. 

Verilog Syntax 

The names of modules and signals in Verilog code follow two simple rules: the name 

must start with a letter, and it can contain any letter or number plus the “_” underscore 

and “$” characters. Verilog is case sensitive. Thus, the name k is not the same as K and 

Example1  is  not  the  same  as  example1.  The  Verilog  syntax  does  not  enforce  a 

particular style of code. For example, multiple statements can appear on a single line. 

White space characters, such as SPACE and TAB, and blank lines are ignored. As a 

matter of good style, code should be formatted in such a way that it is easy to read. 

 
BEHAVIORAL SPECIFICATION OF LOGIC CIRCUITS 

 

Using gate-level primitives can be tedious when large circuits have to be designed. An 

alternative is to use more abstract expressions and programming constructs to describe 

the  behavior  of  a  logic  circuit.  One  possibility  is  to  define  the  circuit  using  

logic expressions. Figure 5.16 shows how the circuit in Figure 5.15 can be defined 

with the expression     f = sx1  + sx2 

 

The  AND  and  OR  operations  are  indicated  by  the  “&”  and  “|”  Verilog  

operators, respectively. The assign keyword provides a continuous assignment for the 

signal f . The word continuous



 
 

Fig 5.16. A logic circuit for the code given in fig 5.15 

module  example3 (x1, x2, s, f); 

input x1, x2, s; 

output f; 

assign  f = (   s & x1) | (s & x2); 

endmodule 
 

Figure 5.17 Using the continuous assignment 
 
stems from the use of Verilog for simulation; whenever any signal on 

the right-hand side changes its state, the value of f will be re-evaluated. 

Using logic expressions makes it easier to write Verilog code. But even 

higher  levels  of  abstraction  can  often  be  used  to  advantage.  

Consider again   the   multiplexer   circuit   of   Figure   5.14.   The   

circuit   can   be described in words by saying that f = x1  if s = 0 and f = 

x2  if s = 1. In Verilog, this behavior can be defined with the if-else 

statement 

 

if (s == 0) 

f = x1; 

else 

f = x2; 

 
module  example4 (x1, x2, x3, x4, f, g, h); 

input  x1, x2, x3, x4; 

output  f, g, h; 

assign  g = (x1 & x3) | (x2 & x4); 

assign  h = (x1 |    x3) & (   x2 | x4); 

assign  f = g | h; 

endmodule 

Figure 5.18 Using the continuous assignment to specify the circuit in Figure 5.16. 

Behavioral specification 
module example5 (x1, x2, s, f); 

input x1, x2, s; output f; 

reg f; 

always @(x1 or x2 or s) 

if (s == 0)



f = x1; 

else 

f = x2; 

endmodule 

 
 
 
 
 
 
Figure 5.19 Behavioral specification

 

The complete code is given in Figure 5.19. The first line illustrates how a comment can 

be inserted. The if-else statement is an example of a Verilog procedural statement. 

Verilog  syntax  requires  that  procedural  statements  be  contained  inside  a  

construct called an always block, as shown in Figure 5.19. An always block can 

contain a single statement, as in this example, or it can contain multiple statements. A 

typical Verilog design  module  may  include  several  always  blocks,  each  

representing  a  part  of  the circuit  being  modeled.  An  important  property  of  the  

always  block  is  that  the statements it contains are evaluated in the order given in the 

code. This is in contrast to the  continuous  assignment  statements,  which  are  

evaluated  concurrently  and  hence have  no  meaningful  order.  The  part  of  the  

always  block  after  the  @  symbol,  in parentheses, is called the sensitivity list. This 

list has its roots in the use of Verilog for simulation. The statements inside an always 

block are executed by the simulator only when one or more of the signals in the 

sensitivity list changes value. In this way, the complexity of a imulation process is 

simplified, because it is not necessary to execute every statement in the code at all 

times. When Verilog is being employed for synthesis of circuits, as in this book, the 

sensitivity list simply tells the Verilog compiler which signals  can  directly  affect  the  

outputs  produced  by  the  always  block.  If  a  signal  is assigned a value using 

procedural statements, then Verilog syntax requires that it be declared as a variable; 

this is accomplished by using the keyword reg in Figure 5.19. This  term  also  derives  

from  the  simulation  jargon:  It  means  that,  once  a  variable’s value is assigned with 

a procedural statement, the simulator “registers” this value and it will not change until 

the always block is executed again.  Instead of using a separate statement  to  declare  

that  the  variable  f  is  of  reg  type  in  Figure  5.19,  we  can alternatively use the 

syntax output reg f; 

which combines these two statements. Also, Verilog 2001 adds the ability to declare a 

signal’s direction and type directly in the module’s list of ports. This style of code is 

illustrated  in  Figure  5.20.  In  the  sensitivity list  of  the  always  statement  we  can  

use commas  instead  of  the  word  or,  which  is  also  illustrated  in  Figure  5.20.  

Moreover, instead of listing the relevant signals in the sensitivity list, it is possible to 

write simply always @(∗)



or even more simply 
 
always @∗ 

 
// Behavioral specification 

module  example5 (input x1, x2, s, output reg f); 
 
always @(x1, x2, s) 

if (s == 0) 

f = x1; 

else 

f = x2; 

endmodule 
 

Fig 5.20  A more compact version of the code in Figure 5.19. 

 
HIERARCHICAL VERILOG CODE 

 

The  examples  of  Verilog  code  given  so  far  include  just  a  single  module.  For  

larger designs,  it  is  often  convenient  to  create  a  hierarchical  structure  in  the  

Verilog  code,  in which there is a top-level module that includes multiple instances of 

lower-level modules. To see how hierarchical Verilog code can be written consider the 

circuit in Figure 5.21. The purpose  of  the  circuit  is  to  generate  the  arithmetic  sum  of  

the  two  inputs  x  and  y, using the adder module, and then to show the resulting decimal 

value on the 7-segment display. Verilog code for the adder module from Figure 5.21 and 

the display module from Figure 5.21   is given in Figures 5.22 and 5.23, respectively. For 

the adder module con- tinuous assignment statements are used to specify the two-bit sum 

s1s0. The assignment statement for s0  uses the Verilog XOR operator, which is specified as 

s0  = a ∧  b. The code for the display module includes continuous assignment statements 

that correspond to the 

 
 

Fig 5.21 A logic circuit with two modules 

An adder module module adder (a, b, s1, s0); 

input a, b; output s1, s0; 

assign s1 = a & b; 

assign s0 = a^b; 

endmodule 
Fig 5.22 Verilog specification of the circuit in Figure 5.21.



A module for driving a 7-segment display module display (s1, 

s0, a, b, c, d, e, f, g); 

input s1, s0; 

output a, b, c, d, e, f, g; 

assign a =    s0; 

assign b = 1; 

assign c =    s1; 

assign d =   s0; 

assign e =    s0; 

assign f =    s1 &    s0; 

assign g = s1 &    s0; 

endmodule 
 

Fig 5.23 Verilog specification of the circuit in Figure 5.21 
 
module adder_display (x, y, a, b, c, d, e, f, g); 

input x, y; 

output a, b, c, d, e, f, g; 

wire w1, w0; 

adder U1 (x, y, w1, w0); 

display U2 (w1, w0, a, b, c, d, e, f, g); 
endmodule 

 

 
 
The statement 

Figure 5.24 Hierarchical Verilog code for the circuit in Figure 5.21 
 
 

assign b = 1;
 

assigns the output b of the display module to have the constant value 1.  The top- 

level Verilog module, named adder_display, is given in Figure 5.21. This module 

has the inputs x and y, and the outputs a, . . . , g. The statement 

 

wire w1, w0; 
 

is  needed  because  the  signals  w1   and  w0   are  neither  inputs  nor  outputs  of  

the circuit  in  Figure  5.24.  Since these signals  cannot  be  declared  as  input  or  

output ports  in  the  Verilog  code,  they  have  to  be  declared  as  (internal)  

wires.  The 

statement 
 

adder U1 (x, y, w1, w0); 
 

instantiates the adder module from Figure 5.22 as a submodule. The submodule is given a name, 

U1,  which  can  be  any  valid  Verilog  name.  The  order  in  which  signals  are  listed  in  the 

instantiation statement determines which signal is connected to each port in the submodule. The 

instantiation  statement  also  attaches  the  last  two  ports  of  the  adder  submodule,  which  are  

its outputs, to the wires w1 and w0 in the top-level module. The statement 

display U2 (w1, w0, a, b, c, d, e, f, g);



instantiates the other submodule in our circuit. Here, the wires w1 and w0, which have already 

been connected to the outputs of the adder submodule, are attached to the corre-sponding input 

ports of the display submodule. The display submodule’s output ports are attached to the a, . . . , g 

output ports of the top-level module.



 

 
 

Section-A 

Unit  –  V 
Assignment-Cum-Tutorial  Questions

1.   The inputs in the PLD is given through 
 

a) NAND gates b)  OR gates c) NOR gates d)  AND gates 
 

2. PAL refers to 
 

a) Programmable Array Loaded  b) Programmable Logic Array c) 

Programmable Array Logic  d)  None of the Mentioned 

3. Outputs  of the AND gate in PLD is known as 
 

a) Input lines b) Output lines c) Strobe lines  d) None of the Mentioned 
 

4.   PLA contains 
 

a) AND and OR arrays  b)  NAND and OR arrays   c)  NOT and AND arrays  d)  NOR and OR 
 

5.    A PLA is similar to a ROM in concept except that 
 

a) It hasn’t capability to read only  b) It hasn’t capability to read or write operation 
 

c) It doesn’t provide full decoding to the variables  d) It hasn’t capability to write only 
 

6. For programmable logic functions, which type  of PLD should  be used? 
 

a) PLA  b) CPLD c)  PAL  d)  SLD 
 

7. The complex programmable logic  device contains several PLD  blocks and    
 

a) A language compiler  b) AND/OR arrays c)  Global interconnection matrix d) Field-

programmable switches 

8. PALs tend to execute                    logic. a)   

SAP b) SOP c)  PLA  d) SPD 
 

9.     Which type of device FPGA are? 
a) SLD b) SROM c) EPROM d) PLD 

 
10. For designing a 4-variable combinational circuit, a designer must  use a a) ROM 

with atleast 16 locations b)  PLA with atleast 32 product terms 
c) PLA with atleast 16 product terms d)  PLA with atleast 16 product terms  and 16 input 
OR gate 

 
11.   A 32x10 ROM contains a decoder of size a)   

5x32  b)   32x32 c)  32x10 d)  10x32 

12. Once a PAL has  been  programmed: 
 

a)   it cannot be reprogrammed.  b) its outputs are  only active HIGHs c)   its 

outputs are only active LOWs  d) its logic capacity is lost 

13. Combinational  Programmable Logic Devices (PLDs)  circuits comprise of  --------- a) Only 

gates b) Only flip flops  c) Both a and b d)  None of the above 

14. Which among the following statement/s is/are not an/the advantage/s of 
Programmable Logic  Devices (PLDs)?



a) Short design cycle  b) increased space requirement c) 

Increased switching speed d)  All of the above 

15. The difference  between a PAL  & a PLA is a) 
PALs and PLAs are the same thing 
b) The  PAL has a programmable OR  plane and a  programmable AND plane, while the 
PLA  only has a programmable AND plane 
c) The PLA has a  programmable OR  plane and a  programmable AND plane, while the 
PAL  only has a programmable AND plane 
d) The  PAL has more  possible  product terms than the PLA 

 

16. The FPGA refers to 
 

a) First programmable Gate Array       b) Field Programmable  Gate Array c) First 

Program Gate Array    d) Field Program Gate  Array 

17.  In FPGA, vertical and horizontal  directions are separated by 
 

a) A line b) A channel c)  A strobe d) A flip-flop 
 

18.   Most FPGA logic  modules utilize a(n)                    approach to create the desired logic 
 

functions. 
 

a)   AND array b. Look-up table c. OR array d. AND and OR array 
 

19. PROM stands for 
 

a)   Permanent Read Only  Memory   b) Portable Read Only Memory c) 

Programmable Read Only Memory  d) Plugin Read Only  Memory 

20.  In the following PLA, which output implements the logic function ABCD? 
 

 
 

a) X b) Y c) Z d) all of the above 
 

21. Simple Programmable Logic Devices (SPLDs)  are also regarded as                              . a) 
Programmable Array Logic (PAL)  b)  Generic  Array Logic (GAL) 
c) Programmable Logic Array (PLA)  d) All  of the above 

 
22.  The content of a simple programmable logic  device (PLD) consists  of: 

 
a)   advanced sequential logic functions  b)   thousands of basic logic gates 

 
c)   thousands  of basic logic gates and advanced sequential logic functions  d) none 

 
23.  The complex programmable logic device (CPLD) contains  --------------------



24. State whether the following statements are  TRUE or FALSE: 
 

a. Verilog is case sensitive. 
 

b. “beginmodule” and “endmodule” are reserved words in Verilog. 
 

c. The semantics of an “&” operator depends on the number of operands. d. An “if” 

statement must always be inside of an “always”  block. 

e. Verilog may be written at the Behavioral, Structural, Gate, Switch, and Transistor 
 

levels. 
 

25.   How many logic values  defined in Verilog with their strength’s 
 

a) One b)  Two c)  Three d)  Four 
 

Section-B 
 

1) Give the classification  of PLDs with respect to their programmability. 
 

2) Explain the internal structure of PROM. 
 

3)   What is programmable logic array? How it differs from PROM? 
 

4) Give the comparison between PROM, PLA and PAL. 
 

5) Show how these functions can  be implemented on a PLA having an 8*8 AND array and a 
 

4X8 OR array. 
 

F1(A,B, C,D) = ∑m (2, 3, 6, 7, 11, 15); F2(A,B, C,D) = ∑m (0, 4, 8, 9, 11, 15) F3(A,B,C,D) = ∑m 

(1,3,5,7,10,11); F4(A,B,C,D) = ∑m (0, 2, 4, 6, 8, 9, 11, 12, 13, 15) 

6) Implement 3-bit binary to gray code converter using PROM. 
 

7) Using PAL, implement  full adder digital circuit. 
 

8) Explain levels of design description  in Verilog  HDL. 
 

9) Design full adder using gate level modeling  Verilog HDL. 
 

10)  Design  8X1 multiplexer  using  behavioral flow  modeling? 
 

11)  Design full adder using half adder using  hierarchical flow modeling? 
 

12) Explain design at behavioral levels  in HDL. 
 

13) Explain the basic structures of CPLD and FPGA. 
 

14) Realize the following  functions  using PLA and PAL, and give programming table for both.



F1(A,B, C,D) = ∑m (2 ,3, 6, 7, 10, 14, 15); F2(A,B,  C,D) = ∑m (3, 5, 7, 10, 12, 14, 15) 
 

F3(A,B,C,D) = ∑m (2, 3, 7, 8, 9, 12, 13, 14, 15). 
 

15) With neat steps explain about CAD design flow using Verilog  HDL. 
 

16)  Give advantages  of FPGAs  over PLDs. 
 

17) Write short notes  on important features of Veriog HDL. 
 

Section-C 
1) Choose the correct statement from the following.                                                                  GATE-1992 

 
a) PROM contains a programmable AND array and a fixed OR array. b) PLA 

contains a fixed AND array and a programmable OR array. 

c) PLA contains a  programmable AND array and a programmable OR array d) PROM 

contains a fixed AND array and a programmable  OR array. 

2) A PLA can  be used                                                                                                                                       GATE-1994 
 

a) As a microprocessor   b) as a  dynamic memory 
c) to realize a sequential logic   d) to realize a combinational logic 

3) Which one  of the following statements is correct?                                                                    IES-2013 
a)   PROM contains a programmable AND array and a fixed OR array b) PLA 
contains a fixed AND array and a programmable OR array 
c) PROM contains a fixed AND array and programmable OR array 
d) PLA contains a programmable AND array and a programmable OR array 

 
4) What is the minimum  size of ROM required to implement the given Boolean 

 
function.                                                                                                                                                          GATE-1996 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

 

 

 

 

 

 

 

 

 

 

 

UNIT – IV 

 Finite State Machines 

 

Objectives: 

• To familiarize with the concepts of Finite state machines. 

 

Syllabus: 

Types of FSM, Capabilities and limitations of FSM, State assignment, Realization of FSM 

using flip-flops, Mealy to Moore conversion and vice-versa, Reduction of state tables using 

partition technique 

 

Outcomes: 

Students will be able to 

• design FSM charts using flip flops. 

• understand the melay machines and moore machines. 

• Reduction methods of state tables. 

• partition technique. 

 

 

 



 

 

 

 

 

 

 

Model Of A Finite State Machine (FSM) 
   It is a Finite State Machine (FSM) also called Finite Automation  in the literature pertaining to 

automata theory. FSM comprises an input set (I), output set (Z),a set of states (S), state transition 

function (𝛿), and output function (λ). Thus, the finite state machine M is a quintuple given by M 

= (I,Z,S, 𝛿, λ),where 𝛿 is a function of present state resulting in the next state and   λ is a function 

which enables us to compute the output depending on the present inputs and present state.The 

previous statement refers to what is generally called the Mealy Machines. 

The clock pulses control all timing in the machine . If the clock is removed, the model represents 

an asynchronous sequential machine with mere delays replacing flip-flops. 

  



 

Limitations Of Finite State Machines 

• No finite state machine can be produced for an infinite sequence. 

• No finite state machine can multiply two arbitrary large binary numbers. 

No finite state machine can be designed to produce such a non-periodic infinite sequence for 

a periodic input. 

Mealy And Moore Models 

    A sequential machine M is a quintuple comprising a set of inputs I,a set of outputs Z, a set 

of states S, a transition function 𝛿 which enables finding the next state depending on the 

present state and present input and finally an output function λ.This is symbolically 

expressed as M=(I,Z,S, 𝛿, λ). 

If the output function depends on the present state and present inputs,it is called the Mealy 

model,named after G.H.Mealy, a pioneer in the field. If the output is associated only with the 

present state,it is called the Moore model, named after another pioneer E.F.Moore.The 

counters are clearly Moore machines as the output depends only on the states of the flip-

flops.Likewise, 

a sequence detector is also a Moore machine.Serial adder is an example of a Mealy machine 

as each one of its states is reached producing a 0 or 1 output depending on the starting state 

and the value of the inputs. 

Mealy To Moore Conversion 

Let us learn how to convert a Mealy machine into a Moore machine .The state diagram and the 

state table of the synchronous serial adder are given below.Notice that the state P is reached from 

the state Q on the application of the inputs AB=00 and ,in the process, the machine produces an 

output Z=1 indicated on the arc as 00/1.Also notice that the machine produces Z=0 in another 

transition to P.This transition is indicated as a self loop around P on inputs AB=00/0.For AB=01 

or 10 while in P, the machine produces an output 1 and remains in the same state P. 

The two important  observations are 

1.If the Mealy machine has K states, the equivalent Moore machine will have at most 2K states if 

the output is a binary variable. 



2.There is no power-on state,unless specifically defined.A special state may be introduced if the 

user wants one. 

 

Moore To Mealy Conversion  

    It is amazingly simple to convert a Moore to Mealy machine.Let some state si given Moore 

machine be associated with an output Zi.What we need to do is simply associate the output  Zi 

where Si occurs as the next state by scanning all the input columns.All states of Moore machine 

are Z homogeneous. 



Reduction Of State Tables Using Partition Technique: 

         Clearly, the 0 partition P0 contains all the states of the machine in one group indicated by 

brackets, because by applying 0 inputs, that is ,no inputs at all, it is not possible to distinguish 

between the states.If you apply any one input, either x=0 or x=1, observe that the outputs ,A,B,F 

cause the corresponding output pattern to be 00 while the states C,D,E cause the outputs to be 01 

in the two input columns of the corresponding rows. Thus, by merely observing the outputs , we 

may form the 1-partition P1 as (ABF),(CDE). 

If each successor pair is within one bracket , we retain the pair intact; otherwise we split the pair. 

Suppose in P2 ,we consider the transition from pair AB in the x=0 column and x=1 column. This 

means that “equivalence of A and B implies equivalence of A and B”- a strange partition which 

is to be ignored. 

  Continuing the process, we find that neither C and  E nor D and E can be equivalent. Hence E 

parts company from CD in the next partition P3 .Continuing further , we find that P4 is identical 

to P3 and hence we stop here and conclude that no experiment exists to distinguish between the 

states AB and CD. Hence we taken them as equivalence classes. 

 

 

Derivation Of Flip-Flop Input Equations 



       After the number of states in a state table has been reduced, the following procedure can be 

used to derive the flip-flop input equations: 

1. Assign flip-flop state values to correspond to the states in the reduced table. 

2. Construct a transition table which gives the next states of the flip-flops as a function of the 

present states and inputs. 

3. Derive the next state maps from the transition table. 

           We could make a straight binary state assignment for which S0 is represented by flip-

flops states ABC=000, S1 by ABC =001, S2 by ABC=010, etc. However because the 

correspondence between flip-flops states and the state names is arbitrary , we could use many 

different state assignments. Using a different assignment may lead to simpler or more complex 

flip-flops input equations. 

 S0=000,   S1=110,  S2=001 ,  S3=111,   S4=011,    S5=101,   S6=010  

   

 

  

For XABC=0000 the next state entry is 110, so we fill in A+ =1 , B+ =1, C+=0.The below figure 

shows the D flipflop input equations can be derived directly from the next state maps because 

DA=A+ , DB=B+, DC=C+. If J-K flip-flops are used, the J and K input equations can be derived 

from the next state maps as shown below. 

 A sequential circuit with two inputs (X1 and X2) and two outputs (Z1 and Z2).Note that the 

column headings are listed in Karnaugh map order because this will facilitate derivation of the 

flip-flops input equations. Because the table has four states, two flip-flops (A and B) are required 

to realize the table. 



 

 

 

 

 

If J-K, T, or S-R flip-flops are used, the flip-flops input maps can be derived from the next state 

maps. 

            



 

 

Equivalent State Assignments 

       After the number of states in a state table has been reduced, the next step in realizing the 

table is to assign flip-flop states to correspond to the states in the table. The trail-and-error 

method described next is useful for only a small number of states. If the number of states is small, 

it may be feasible to try all possible state assignments, evaluate the cost of the realization for 

each assignment, and choose the assignment with low cost. 

    If symmetrical flip-flops such as T, J-K, S-R are used, complementing one or more columns of 

the state assignment will have no effect on the cost of realization. Consider a J-K flip-flip 

imbedded in a circuit. Leave the circuit unchanged and interchange the J and K input connections.  

 



 

 

If unsymmetrical flip-flops are used such as D flip-flop , it is still true that permuting columns in 

the state assignment will not affect the cost; however complementing a column may require 

adding  an inverter to the circuit . 

If different types of gates are available the circuit can generally be redesigned to eliminate the 

inverter and use the same number of gates as the original. 



 

   The J-K and D flip-flops input equations for the three assignments can be derived using 

Karnaugh maps.  



 

 We will say that two state assignments are equivalent if one can be derived from the other 

by permuting and complementing columns.Two state assignments which are not equivalent are 

said to be distinct. Hand solution is feasible for two, three,or four states ; computer solution is 

feasible for five through eight states; but more than nine states it is not practically to try all 

assignments even if high-speed computer is used. 



     

 

 

 

 

 

 



 

IMPORTANT TERMS: 

 

Terminal state: 

         A terminal state is a state with no incoming arcs which start from other states and 

terminate on it. 

 

Strongly connected machine: 

        A sequential machine M is said to be strongly connected, if for every pair of states si, 

sj of the sequential machine,there exists an input sequence which takes the machine M 

from si  to sj. 

 

Redundant states: 

      Redundant states are states whose functions can be accomplished by other states. 

 

Equivalent states: 

       Two states are said to be equivalent if for every possible set of inputs they generate 

exactly the same output and the same next state. 

When equivalent states are there, one of them can be retained and all others can be 

removed without altering the input-output relationship because they are redundant. This 

results in reduction of states which in turn reduces the number of required flip-flops and 

logic gates reducing the cost of final circuit. 

 

 

 

 

 

 

 

 

 

 



UNIT-VI 

Digital Design using HDL’s 

Objective: 
➢ To give a model of combinational and sequential circuits using HDL’s. 

 

Syllabus: 

  Verilog for combinational circuits- conditional operator, if-else statement, case statement, for 

loop; using storage elements with CAD tools-using Verilog constructs for storage elements, 

blocking and non-blocking assignments, non-blocking assignments for combinational circuits, 

flip-flop with clear capability, using Verilog constructs for registers and counters. 

 

Outcome: 

  Students will be able to 

➢ Develop digital circuits using HDL 

➢ Differentiate blocking and non-blocking assignments in Verilog. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



6.1 Verilog for Combinational circuits: 

Rather than using logic gates or logic expressions, combinational circuits can be specified 

in terms of their behavior. To describe the building blocks efficiently, several Verilog constructs 

have been used. In many cases a given circuit can be described in various ways, using different 

constructs. 

A circuit can be described using if-else statement can also described using a case 

statement or perhaps a for loop. In general there is no restrict rules that dictate when one style 

should be preferred over another. 

Various constructs which are useful to design combinational circuits are discussed in 

following sections. 

 

6.1.1 Conditional Operator: 

In a logic circuit it is often necessary to choose between several possible signals or values 

based on the state of some condition. 

  Example: Multiplexer 

 In Multiplexer the output is equal to the data input signal chosen by the valuation of the 

select inputs. For simple implementation of such choices Verilog provides a conditional operator 

(? :) which assigns one of two values depending on a conditional expression. It involves three 

operands used in the syntax. 

 

              conditional_expression ? true_expression : false_expression 

            

Example: 2X1 Multiplexer 

           



The 2X1 Multiplexer has the inputs w0,w1 and s, and the output f. The signal s is used for the 

selection. The output f is equal to w1 if the select input s has the value 1; otherwise f is equal to 

w0. 

The following module shows 2X1 multiplexer code using conditional operator in an assignment 

statement. 

 

module mux2x1 (w0,w1,s,f); 

input w0,w1,s; 

output f; 

assign f = s ? w1 : w0; 

endmodule 

 

The conditional operator can be used in always block. The following module shows 2X1 

multiplexer code using conditional operator in always block. 

 

module mux2x1 (w0,w1,s,f); 

input w0,w1,s; 

output  reg f; 

always @( w0,w1,s) 

     f = s ? w1 : w0; 

endmodule 

 

Example: 4X1 Multiplexer 

        



The 4X1 Multiplexer  has 2 select line s1 and s0, which are represented by the two-bit vector S. 

 The first conditional expression tests the value of bit s1. If s1=1, the s0 is tested and f is 

set to w3 if s0=1 and f is set to w2 if s0=0.This corresponds to third and fourth rows of the truth 

table.  

Similarly if s1=0 the conditional operator on the right chooses f=w1 if s0=1 and f=w0 if 

s0=0, thus realizing the first two rows of the truth table. 

 

module mux4x1 ( w0,w1,w2,w3,S,f); 

input w0,w1,w2,w3; 

input [1:0] S; 

output f; 

assign f = S[1] ? (S[0] ? w3 :w2) : (S[0] ? w1 : w0); 

endmodule 

 

6.1.2 The if-else Statement: 

  Syntax: if (conditional_expression) statement; 

                 else statement; 

 

If the expression is evaluated to true then the first statement (or a block of statements delineated 

by begin and end keywords) is executed, or else the second statement (or a block of statements) 

is executed. 

 

2X1 multiplexer code using if-else: 

module mux2x1 (w0,w1,s,f); 

input w0,w1,s; 

output  reg f; 

always @( w0,w1,s) 

     if (s == 0) 

         f=w0; 

    else 

        f=w1; 

endmodule 



4X1 multiplexer code using if-else: 

module mux4x1 ( w0,w1,w2,w3,S,f); 

input w0,w1,w2,w3; 

input [1:0] S; 

output reg f; 

always @ (*) 

 if (s == 2’b00) 

    f = w0; 

else if( s == 2’b01) 

    f=w1; 

else if (s == 2’b10) 

    f=w2; 

else 

   f = w3; 

endmodule 

 

6.1.3 The case statement 

The if-else statement provides the means for choosing an alternative based on the value of 

an expression. Instead, it is often possible to use the Verilog case statement which is defined as 

 

case (expression) 

alternative1: statement; 

alternative2: statement; 

· 

· 

· 

alternativej: statement; 

[default: statement;] 

            endcase 

The value of the controlling expression and each alternative are compared bit by bit. When there 

is one or more matching alternative, the statement(s) associated with the first match (only) is 

executed. When the specified alternatives do not cover all possible valuations of the controlling 

expression, the optional default clause should be included. Otherwise, the Verilog compiler will 

synthesize memory elements to deal with the unspecified possibilities. 



 

Example 1 : 4X1 multiplexer code using case 

module mux4x1 ( w, S, f); 

input [3:0]w; 

input [1:0] S; 

output reg f; 

   always @ (*) 

                   case (s) 

                0: f = w[0]; 

                 1: f = w[1]; 

                 2 : f = w  2]; 

                3 : f = w[3]; 

                 default: f=1’b0; 

                endcase 

                 endmodule 

 

Example 2 : 2 to 4 decoder 

                    

 module dec2to4 (W, En, Y); 

input [1:0]W; 

input En; 

output reg [0:3] Y; 

always @(W, En) 

case ({En,W}) 

3’b100: Y = 4’b1000; 

3’b101: Y = 4’b0100; 

3’b110: Y = 4’b0010; 

3’b111: Y = 4’b0001; 

default: Y = 4’b0000; 

endcase 

endmodule 

 

  

 

6.1.3.1 casex and casez statements 



In the case statement it is possible to use the logic values 0, 1, z, and x in the case alternatives. A 

bit-by-bit comparison is used to determine the match between the expression and one of the 

alternatives. 

Verilog provides two variants of the case statement that treat the z and x values in a different way. 

The casez statement treats all z values in the case alternatives and the controlling expression as 

don’t cares. The casex statement treats all z and x values as don’t cares. 

 

Example :  4X2 Priority encoder                                

 module priority (W, Y); 

input [3:0]W; 

output reg [1:0] Y; 

always @(W) 

begin 

casex (W) 

4’b1xxx: Y = 3; 

4’b01xx: Y = 2; 

4’b001x: Y = 1; 

4’b0001: Y = 0; 

default: begin 

Y = 2’bx; 

               endcase 

          end 

endmodule 

 

// The first alternative specifies that 

the output is set to y1y0 = 3 if the input w3 

is 1.  

// This assignment does not depend on the 

values of inputs w2, w1, or w0; hence their 

values do not matter.  

// The other alternatives in the casex // 

statement are evaluated only if w3 = 0.  

// The second alternative states that if w2 

is 1, then y1y0 = 2.  

// If w2 = 0, then the next alternative results           

    in y1y0 = 1 if w1 = 1.  

// If w3 = w2 = w1 = 0 and w0 = 1, then the 

fourth alternative results in y1y0 = 0. 

 

6.1.4 The for loop 

If the structure of a desired circuit exhibits a certain regularity, it may be convenient to 

define the circuit using a for loop. The for loop has the syntax 

                      for (initial_index; terminal_index; increment) statement; 

A loop control variable, which has to be of type integer, is set to the value given as the 

initial index. It is used in the statement or a block of statements delineated by begin and end 

keywords. After each iteration, the control variable is changed as defined in the increment. The 

iterations end after the control variable has reached the terminal index. 

Unlike for loops in high-level programming languages, the Verilog for loop does not 

specify changes that take place in time through successive loop iterations. Instead, during 

each iteration it specifies a different sub circuit. 

Example 1: 2 to 4 decoder 



module dec2to4 (W, En, Y); 

input [1:0]W; 

input En; 

output reg [0:3] Y; 

integer k; 

    always @(W, En) 

         for (k = 0; k< = 3; k = k+1) 

              if ((W == k) && (En == 1)) 

                          Y[k] = 1; 

             else 

                         Y[k] = 0; 

Endmodule 

 

Example 2:  4X2 priority encoder 

module priority (W, Y); 

input [3:0]W; 

output reg [1:0] Y; 

integer k; 

always @(W) 

  begin 

                 Y = 2’bx; 

for (k = 0; k < 4; k = k+1) 

if (W[k]) 

Y= k; 

       

              end 

endmodule 

 

 

 

 

 

 

 

 

 

// The effect of the loop is to repeat the if-

else statement four times, for k = 0, . . . , 3.  

// The first loop iteration sets y0 = 1 if W = 0 

and En = 1.  

// Similarly, the other three iterations set the 

values of y1, y2, and y3 according to the 

values of W and En. 

 

 

 

 

 

 

// if one or more of the four inputs 

w3, . . . ,w0 is equal to 1, the for loop will 

set 

the valuation of y1y0 to match the index of 

the highest priority input that has the value 1. 

// Note that each successive iteration through 

the loop corresponds to a higher priority. // 

Verilog semantics specify that a signal that 

receives multiple assignments in an always 

block retains the last assignment.  

// Thus the iteration that corresponds to the 

highest priority input that is equal to 1 will 

override any setting of Y established during 

the previous iterations. 

 

 

 

 

 

 

 

 

 

 

 

 

 



6.2 Using Storage elements with CAD Tools 

   

  Circuits with storage elements can be designed using either schematic capture or Verilog code. 

 

 6.2.1 Using Verilog Constructs for Storage Elements 

 

A simple way of specifying a storage element is by using the if-else statement to describe 

the desired behavior responding to changes in the levels of data and clock inputs. 

 

Consider the always block 

       always @(Control, B) 

            if (Control) 

                A= B; 

where A is a variable of reg type. This code specifies that the value of A should be made 

equal to the value of B when Control = 1. But the statement does not indicate an action that 

should occur when Control = 0. In the absence of an assigned value, the Verilog compiler 

assumes that the value of A caused by the if statement must be maintained when Control is not 

equal to 1. This notion of implied memory is both of these signals can cause a change in the value 

of the Q output. realized by instantiating a latch in the circuit. 

 

Example 1: Gated D latch 

The following module named D_latch, which has the inputs D and Clk and the output Q. 

The if clause defines that the output must take the value of D when Clk = 1. Since no else clause 

is given, a latch will be synthesized to maintain the value of Q when Clk = 0. Therefore, the code 

describes a gated D latch. The sensitivity list includes Clk and D because both of these signals 

can cause a change in the value of the Q output. 

 

module D_latch (D, Clk, Q); 

input D, Clk; 

output reg Q; 

   always @ (D, Clk) 

        if (Clk) 

            Q = D; 

endmodule 

 

Example 2: D Flip-Flop 

 



  The following module named flip flop, which is a positive- edge-triggered D flip-flop. 

The sensitivity list contains only the clock signal because it is the only signal that can cause a 

change in the Q output. The keyword posedge specifies that a change may occur only on the 

positive edge of Clock. At this time the output Q is set to the value of the input D. Since posedge 

appears in the sensitivity list, Q will be implemented as the output of a flip-flop. 

 

module flipflop (D, Clock, Q); 

input D, Clock; 

output reg Q; 

    always @(posedge Clock) 

          Q = D; 

endmodule 

 

6.2.2 Blocking and Non-Blocking Assignments 

 

Two types of procedural assignment statements: 

a) Blocking (denoted by “=“) 

b) Non-blocking (denoted by “<=“) 

6.2.2.1: Blocking Assignments 

Blocking assignment statements are executed in the order they are specified in a 

procedural block. The target of an assignments gets updated before the next sequential statement 

in the procedural block is executed. They do not block execution of statements in other 

procedural blocks. This is the recommended style for modeling combinational logic. 

 

Example:  

 

module example_blocking (D, Clock, Q1, Q2); 

input D, Clock; 

output reg Q1, Q2; 

always @(posedge Clock) 

begin 

Q1 = D; 

Q2 = Q1; 

End 

endmodule 

 

In the above code the always block is sensitive to the positive clock edge, both Q1 and Q2 

will be implemented as the outputs of D flip-flops. However, because blocking assignments are 



involved, these two flip-flops will not be connected in cascade The first statement Q1 = D; sets 

Q1 to the value of D. This new value is used in evaluating the subsequent statement Q2 = Q1; 

which results in Q2 = Q1 = D. The synthesized circuit has two parallel flip-flops, as illustrated 

in following figure. 

 
6.2.2.2: Non- Blocking Assignments 

The “<=“ operator is used to specify non-blocking assignment. Non-blocking assignment 

statements allow scheduling of assignments without blocking execution of statements that follow 

within the procedural block. The assignment to the target gets scheduled for the end of the 

simulation cycle (at the end of the procedural block). Statements subsequent to the instruction 

under consideration are not blocked by the assignment. These assignments allow concurrent 

procedural assignment, suitable for sequential logic. 

 

Example: 

module example_non_blocking (D, Clock, Q1, Q2); 

input D, Clock; 

output reg Q1, Q2; 

always @(posedge Clock) 

   begin 

             Q1 < = D; 

             Q2 < = Q1; 

          end 

endmodule 

The variables Q1 and Q2 have some value at the start of evaluating the always block, and then 

they change to a new value concurrently at the end of the always block. This code generates a 



cascaded connection between flip-flops, which implements the shift register as shown in 

following figure. 

 
6.3 Non-blocking assignments for combinational circuits 

 

Non-blocking assignments can be used in most situations, but when subsequent assignments in 

an always block depend on the results of previous assignments, the non-blocking assignments 

can generate nonsensical circuits. 

Example: Assume that we have a three-bit vector A = a2a1a0, and we wish to generate a 

combinational function f that is equal to 1 when there are two adjacent bits in A that have the 

value 1. 

 

With blocking assignments the function f is specified as 

 

always @(A) 

begin 

f = A[1] & A[0]; 

f = f | (A[2] & A[1]); 

end 

 

These statements produce the desired logic function, which is f = a1a0 + a2a1. 

 

With Non- blocking assignments the function f is specified as 

 

f <= A[1] & A[0]; 

f <= f | (A[2] & A[1]); 

 

Here f  has an unspecified initial value when we enter the always block. The first statement 

assigns f = a1a0, but this result is not visible to the second statement. It still sees the original 

unspecified value of f. The second assignment overrides (deletes!) the first assignment and 

produces the logic function f = f + a2a1. This expression does not correspond to a combinational 

circuit, because it represents an AND-OR circuit in which the OR-gate is fed back to itself.  

 

So, It is best to use blocking assignments when describing combinational circuits, so as to avoid 

accidentally creating a sequential circuit. 
 



 

6.4: Flip-flops with clear Capability 

 

Reset (clear) is a signal that is used to initialize the hardware, as the design does not have a way 

to do self-initialization. That means, reset forces the design to a known state. In simulation, 

usually it is activated at the beginning, but in real hardware, reset is usually activated to power 

up the circuits. 

 

By using a particular sensitivity list and a specific style of if-else statement, it is possible to 

include clear (or preset) signals on flip-flops. 

 

There are two types of resets used in hardware designs. They are synchronous and asynchronous 

resets. 

 

6.4.1 Synchronous Reset 

Synchronous reset means reset is sampled with respect to clock. In other words, when reset is 

enabled, it will not be effective till the next active clock edge. 

Example: 

module flipflop (D, Clock, Resetn, Q); 

input D, Clock, Resetn; 

output reg Q; 

always @(posedge Clock) 

if (!Resetn) 

Q <= 0; 

else 

Q <= D; 

Endmodule 

In the above code, the reset signal is acted upon only when a positive clock edge arrives.  

6.4.2: Asynchronous Reset 

In asynchronous reset, reset is sampled independent of clock. That means, when reset is enabled 

it will be effective immediately and will not check or wait for the clock edges. 

Example: 



module flipflop (D, Clock, Resetn, Q); 

input D, Clock, Resetn; 

output reg Q; 

always @(negedge Resetn, posedge Clock) 

if (!Resetn) 

Q <= 0; 

else 

Q <= D; 

endmodule 

When Resetn, the reset input, is equal to 0, the flip-flop’s Q output is set to 0. Note that the 

sensitivity list specifies the negative edge of Resetn as an event trigger along with the positive 

edge of the clock. We cannot omit the keyword negedge because the sensitivity list cannot have 

both edge-triggered and level sensitive signals. 

 

6.5 Using Verilog Constructs for Registers and Counters 

          

 

6.5.1: n-Bit Register with Asynchronous Clear: 

 

Registers of different sizes are often needed in logic circuits, it is advantageous to define a 

register module for which the number of flip-flops can be easily changed. n-bit Register code can 

be written with parameter construct 

 

  Parameter: Verilog allows constants to be defined in a module by the keyword parameter.       

  Parameters cannot be used as variables. Parameter values for each module instance can be  

  overridden individually at compile time. This allows the module instances to be customized. 

  Use of parameters make the module definition flexible. Module behavior can be altered simply  

  by changing the value of  a parameter. 

Code for n-bit register: 

module regn (D, Clock, Resetn, Q); 

parameter n = 16; 

input [n –1:0] D; 

input Clock, Resetn; 

output reg [n –1:0] Q; 

always @(negedge Resetn, posedge Clock) 

if (!Resetn) 

Q <= 0; 

else 

Q <= D; 

endmodule 



   The parameter n specifies the number of flip-flops in the register. By changing this parameter, 

the code can represent a register of any size. 

 

 

6.5.2: Four Bit Shift Register: 

A four bit shift register can be written using hierarchical code that uses four D flip-flops. Instead 

of using sub circuits, the shift register can also be written using behavioral style. 

 In the following behavioral code, all actions take place at the positive edge of the clock. If L = 1, 

the register is loaded in parallel with the four bits of input R. If L = 0, the contents of the register 

are shifted to the right and the value of the input w is loaded into the most-significant bit Q3. 

module shift4 (R, L, w, Clock, Q); 

input [3:0] R; 

input L, w, Clock; 

output reg [3:0] Q; 

always @(posedge Clock) 

if (L) 

Q <= R; 

else 

begin 

Q[0] < = Q[1]; 

Q[1] < = Q[2]; 

Q[2] < = Q[3]; 

Q[3] < = w; 

end 

endmodule 

 

6.5.3: N- Bit Shift Register: 

The following code shows the code that can be used to represent shift registers of any size. The 

parameter n, which has the default value 16, sets the number of flip-flops. 

 

module shiftn (R, L, w, Clock, Q); 

parameter n = 16; 

input [n –1:0] R; 

input L, w, Clock; 

output reg [n –1:0] Q; 

integer k; 

always @(posedge Clock) 

if (L) 

Q <= R; 

else 

begin 



for (k = 0; k < n –1; k = k+1) 

Q[k] < = Q[k+1]; 

Q[n –1] <= w; 

end 

endmodule 

 

6.5.4: Up-Counter 

 

A four-bit up-counter with a reset input, Resetn, and an enable input, E. The outputs of the flip-

flops in the counter are represented by the vector named Q. The if statement specifies an 

asynchronous reset of the counter if Resetn = 0. The else if clause specifies that if E = 1 the count 

is incremented on the positive clock edge. 

module upcount (Resetn, Clock, E, Q); 

input Resetn, Clock, E; 

output reg [3:0] Q; 

always @(negedge Resetn, posedge Clock) 

if (!Resetn) 

Q <= 0; 

else if (E) 

Q <= Q + 1; 

Endmodule 

 

6.5.5: Up-Counter with parallel load 

The following code defines an up-counter that has a parallel-load input in addition to a reset 

input. The parallel data is provided as the input vector R. The first if statement provides the same 

asynchronous reset. The else if clause specifies that if L = 1 the flip-flops in the counter are 

loaded in parallel from the R inputs on the positive clock edge. If L = 0, the count is incremented, 

under control of the enable input E. 

module upcount (R, Resetn, Clock, E, L, Q); 

input [3:0] R; 

input Resetn, Clock, E, L; 

output reg [3:0] Q; 

always @(negedge Resetn, posedge Clock) 

if (!Resetn) 

Q <= 0; 

else if (L) 

Q <= R; 

else if (E) 

Q <= Q + 1; 

Endmodule 

 



6.5.6: Down Counter with parallel load 

The following figure shows the code for a down-counter named  downcount. A down-counter is 

normally used by loading it with some starting count and then decrementing its contents. The 

starting count is represented in the code by the vector R. On the positive clock edge, if L = 1 the 

counter is loaded with the input R, and if L = 0 the count is decremented, under control of the 

enable input E. 

module downcount (R, Clock, E, L, Q); 

parameter n = 8; 

input [n –1:0] R; 

input Clock, L, E; 

output reg [n –1:0] Q; 

always @(posedge Clock) 

if (L) 

Q <= R; 

else if (E) 

Q <= Q – 1 

Endmodule 

 

6.5.7: Up/Down Counter 

 

Verilog code for an up/down counter is given in following Figure. This module combines the 

capabilities of  up and down  counters. It  includes a control signal up_down that governs the 

direction of counting. 

 

module updowncount (R, Clock, L, E, up_down, Q); 

parameter n = 8; 

input [n– 1:0] R; 

input Clock, L, E, up_down; 

output reg [n– 1:0] Q; 

always @(posedge Clock) 

if (L) 

Q <= R; 

else if (E) 

Q < = Q + (up_down ? 1 : –1); 

Endmodule 

 

 

 

 

 

 

 

 

 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

Assignment-Cum-Tutorial Questions 

                                                  Section-A 
1. Which of the following statement is true for Verilog modules? 

a. A module can contain definitions of other modules. 

b. When a module X is called multiple numbers of times from some other module, only    

     one copy of module X is included in the hardware after synthesis. 

c. More than one module can be instantiated within another module. 

d. None of the above 

2. What does the statement “assign f = (a & b) | (a ^ b)” signify? 

a. In module declaration f is declared as reg. 

b. A dataflow description of the function f. 



c. A structural description of the function f. 

d. All of the above 

3. Which of the following is not true for register type variables? 

a. It will always map to a hardware register after synthesis. 

b. It can be used in an expression on the RHS of an “assign” statement. 

c. Once a value is assigned, it will hold the value. 

d. None of the above. 

4. If “clk” and “clear” are two inputs of a module that defines a register, which of the following   

    event expressions must be used if we want to implement asynchronous clear (assuming “clear”  

      is active low)? 

a. always @(posedge clk) 

b. always @(negedge clear) 

c. always @(posedge clk or negedge clear) 

d. None of the above 

5. What will the following code segment do? 

always @(posedge clock) 

begin 

red = blue; 

blue = red; 

end 

a. Exchange the values of the variables “red” and “blue”. 

b. Both variables will get the value previously stored in “red”. 

c. Both variables will get the value previously stored in “blue”. 

            d. None of the above. 

6. What will the following code segment generate on synthesis, assuming that the four variables  

   y0, y1, y2 and y3 map into four latches / flip-flops? 

always @(posedge clock) 

begin 

y3 = in; 

y2 = y3; 

y1 = y2; 

y0 = y1; 



end 

a. A 4-bit shift register.                                  b. A 4-bit parallel-in parallel-out register. 

c. Four D flip-flops all fed with the data “in”.        d. None of the above. 

7. What will the following code segment generate on synthesis? 

always @(posedge clock) 

begin 

y3 <= in; 

y2 <= y3; 

y1 <= y2; 

y0 <= y1; 

end 

a. A 4-bit shift register.                          b. A 4-bit parallel-in parallel-out register. 

c. Four D flip-flops all fed with the data “in”.             d. None of the above. 

8. An event is triggered by symbol  

      a. =>                 b . --->             c . @                 d. None 

9. Which of the following is true about the always block? 

 a. There can be exactly one always block in a design.  

  b. There can be exactly one always block in a module.  

c. Execution of an always block occurs exactly once per simulation run. 

 d. An always block may be used to generate a periodic signal.  

10. For describing circuits like flip flops _____________ statement is used  

           a. Always        b. Entity            c. Component            d. Process 

11. In non- blocking assignment  

a . Evaluates all RHS for current time unit and assign to LHS at current time  

b . Evaluates all RHS for current time unit and assign to LHS at the end of time unit  

c . Whole statement is done before control passes to next statement  

d. None 

12. If a variable is not assigned in all possible executions of an always statement then: 

a. A don’t care is inferred 

b. A latch is inferred 

c. The variable is set to 0 

d. The synthesis process will fail 



Section-B 

1.Write a verilog code to swap contents of two registers with and without a temporary register? 

2. Write a Verilog code that represents a T flip-flop with asynchronous clear input. 

3. Differentiate blocking and non blocking assignments with examples. 

4. Why non-blocking assignments are not preferable in combinational circuits. 

5. Using casex statement, write Verilog code for an 8-to-3 priority encoder. 

6. What is the difference between synchronous Reset and Asynchronous reset. 

7. Write Verilog code for 3-to-8 decoder using for loop. 

                                                                     

Section-C 

 

  1. Consider the Verilog code. What type of circuit does the code represent? 

module example (W, En, y0, y1, y2, y3); 

input [1:0]W; 

input En; 

output reg y0, y1, y2, y3; 

always @(W, En) 

begin 

y0 = 0; 

y1 = 0; 

y2 = 0; 

y3 = 0; 

if (En) 

if (W == 0) y0 = 1; 

else if (W == 1) y1 = 1; 

else if (W == 2) y2 = 1; 

else y3 = 1; 

end 

endmodule 

2. Consider the following Verilog module.  

module guess (data, cond, result);  

input [7:0] data;  

input [1:0] cond; 

output reg result;  

always @(data)  

begin  

if (cond == 2’b00) result = |data;  

else result = ~^data;  

end  

endmodule 

Which of the following are true when the module is synthesized?  



a. A combinational circuit will be generated.  

b. A sequential circuit with a storage element for result will be generated.  

c. The synthesize system will generate a wire for result.  

d. None of the above.  

3. Design four-bit Synchronous counter with parallel load. Use T flip-flops. 

4. An SR flip-flop is a flip-flop that has set and reset inputs like a gated SR latch. Show how an   

    SR flip-flop can be constructed using a D flip-flop and other logic gates. 

5. The circuit in Figure looks like a counter. What is the counting sequence of this circuit? 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 


